IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i4d10.1007_s12351-019-00531-y.html
   My bibliography  Save this article

A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters

Author

Listed:
  • Pradip Kundu

    (Birla Global University)

Abstract

This paper considers a multi-objective reliability-redundancy allocation problem (MORRAP) of a series-parallel system, where system reliability and system cost are to be optimized simultaneously subject to limits on weight, volume, and redundancy level. Precise computation of component reliability is very difficult as the estimation of a single number for the probabilities and performance levels are not always possible, because it is affected by many factors such as inaccuracy and insufficiency of data, manufacturing process, environment in which the system is running, evaluation done by multiple experts, etc. To cope with impreciseness, we model component reliabilities as interval type-2 fuzzy numbers (IT2 FNs), which is more suitable to represent uncertainties than usual or type-1 fuzzy numbers. To solve the problem with interval type-2 fuzzy parameters, we first apply various type-reduction and defuzzification techniques, and obtain corresponding defuzzified values. As maximization of system reliability and minimization of system cost are conflicting to each other, so to obtain compromise solution of the MORRAP with defuzzified parameters, we apply five different multi-objective optimization methods, and then corresponding solutions are analyzed. The problem is illustrated numerically for a real-world MORRAP on pharmaceutical plant, and solutions are obtained by standard optimization solver LINGO, which is based on gradient-based optimization—Generalized Reduced Gradient technique.

Suggested Citation

  • Pradip Kundu, 2021. "A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters," Operational Research, Springer, vol. 21(4), pages 2433-2458, December.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:4:d:10.1007_s12351-019-00531-y
    DOI: 10.1007/s12351-019-00531-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00531-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00531-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    2. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    3. Pradip Kundu & Samarjit Kar & Manoranjan Maiti, 2014. "Multi-objective solid transportation problems with budget constraint in uncertain environment," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1668-1682, August.
    4. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    5. Hong-Zhong Huang & Jian Qu & Ming Zuo, 2009. "Genetic-algorithm-based optimal apportionment of reliability and redundancy under multiple objectives," IISE Transactions, Taylor & Francis Journals, vol. 41(4), pages 287-298.
    6. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    7. Miettinen, Kaisa & Makela, Marko M., 2006. "Synchronous approach in interactive multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 170(3), pages 909-922, May.
    8. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    9. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    10. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsieh, Tsung-Jung, 2023. "Performance indicator-based multi-objective reliability optimization for multi-type production systems with heterogeneous machines," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    2. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    3. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    4. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    6. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    7. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
    8. Behzad Karimi & Seyed Taghi Akhavan Niaki & Seyyed Masih Miriha & Mahsa Ghare Hasanluo & Shima Javanmard, 2019. "A weighted K-means clustering approach to solve the redundancy allocation problem of systems having components with different failures," Journal of Risk and Reliability, , vol. 233(6), pages 925-942, December.
    9. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    10. Enrico Zio & Hadi Gholinezhad, 2023. "Redundancy Allocation of Components with Time-Dependent Failure Rates," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
    11. Andrés Cacereño & David Greiner & Blas J. Galván, 2021. "Multi-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-II," Mathematics, MDPI, vol. 9(15), pages 1-39, July.
    12. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    13. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    15. Alikar, Najmeh & Mousavi, Seyed Mohsen & Raja Ghazilla, Raja Ariffin & Tavana, Madjid & Olugu, Ezutah Udoncy, 2017. "Application of the NSGA-II algorithm to a multi-period inventory-redundancy allocation problem in a series-parallel system," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 1-10.
    16. Karimi, Behzad & Niaki, S.T.A. & Haleh, Hassan & Naderi, Bahman, 2018. "Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 92-104.
    17. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    18. Yadav, Deepanshu & Nagar, Deepak & Ramu, Palaniappan & Deb, Kalyanmoy, 2023. "Visualization-aided multi-criteria decision-making using interpretable self-organizing maps," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1183-1200.
    19. Hartikainen, Markus & Miettinen, Kaisa & Klamroth, Kathrin, 2019. "Interactive Nonconvex Pareto Navigator for multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 275(1), pages 238-251.
    20. Guilani, Pardis Pourkarim & Juybari, Mohammad N. & Ardakan, Mostafa Abouei & Kim, Heungseob, 2020. "Sequence optimization in reliability problems with a mixed strategy and heterogeneous backup scheme," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:4:d:10.1007_s12351-019-00531-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.