IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v05y2014i04ns2010007814500110.html
   My bibliography  Save this article

Weather Sensitivity Of Rice Yield: Evidence From India

Author

Listed:
  • ANUBHAB PATTANAYAK

    (Madras School of Economics, Gandhi Mandapam Road, Chennai 600 025, India)

  • K. S. KAVI KUMAR

    (Madras School of Economics, Gandhi Mandapam Road, Chennai 600 025, India)

Abstract

This study estimates the weather sensitivity of rice yield in India, using disaggregated (district) level information on rice and high resolution daily weather data over the period 1969–2007. Compared to existing India specific studies on rice which consider only the effects of nighttime (minimum) temperature, the present study takes into account the effects of both nighttime and daytime (maximum) temperatures along with other weather variables on rice yield. The results suggest that both nighttime and daytime temperatures adversely affect rice during different growth phases. The effect of higher nighttime temperature on rice yield was much lower than those estimated by previous studies. Further, the negative impact of higher daytime temperature on rice yield was much larger than the impact due to higher nighttime temperature. The study further estimates that average rice yield would have been 8.4% higher had the pre-1960 climatic conditions prevailed during the period of study. This translates into an annual average loss of 4.4 million tons/yr or a cumulative loss of 172 million tons over the 39 year period for India. The paper argues that such significant loss in rice production under climate change conditions in future will have strong implications for the region's food-security and poverty, given that a large number of producers and consumers depend on rice for their livelihood and sustenance.

Suggested Citation

  • Anubhab Pattanayak & K. S. Kavi Kumar, 2014. "Weather Sensitivity Of Rice Yield: Evidence From India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-24.
  • Handle: RePEc:wsi:ccexxx:v:05:y:2014:i:04:n:s2010007814500110
    DOI: 10.1142/S2010007814500110
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007814500110
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007814500110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    2. K. S. Kavi Kumar, 2011. "Climate sensitivity of Indian agriculture: do spatial effects matter?," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 4(2), pages 221-235.
    3. Abhijit Banerjee & Lakshmi Iyer, 2005. "History, Institutions, and Economic Performance: The Legacy of Colonial Land Tenure Systems in India," American Economic Review, American Economic Association, vol. 95(4), pages 1190-1213, September.
    4. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    5. K.S. Kavi Kumar & Kamal Karunagoda & Enamul Haque & L. Venkatachelam & Girish Nath Bahal, 2012. "Addressing Long-term Challenges to Food Security and Rural Livelihoods in South Asia," Working Papers 2012-075, Madras School of Economics,Chennai,India.
    6. K.S. Kavi Kumar, 2009. "Climate Sensitivity of Indian Agriculture," Working Papers 2009-043, Madras School of Economics,Chennai,India.
    7. Deaton, Angus, 1995. "Data and econometric tools for development analysis," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 3, chapter 33, pages 1785-1882, Elsevier.
    8. Seema Jayachandran, 2006. "Selling Labor Low: Wage Responses to Productivity Shocks in Developing Countries," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 538-575, June.
    9. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    10. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    11. Mundlak, Yair, 2001. "Production and supply," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 1, pages 3-85, Elsevier.
    12. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    13. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    14. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    15. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    16. Dinar, A. & Mendelsohn, R. & Evenson, R. & Parikh, J. & Sanghi, A. & Kumar, K. & McKinsey, J. & Lonergen, S., 1998. "Measuring the Impact of CLimate Change on Indian Agriculture," Papers 402, World Bank - Technical Papers.
    17. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    18. Chandra Kiran B. Krishnamurthy, 2012. "The Distributional Impacts of Climate Change on Indian Agriculture: A Quantile Regression Approach," Working Papers 2012-069, Madras School of Economics,Chennai,India.
    19. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    20. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    21. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    22. Neville Nicholls, 1997. "Increased Australian wheat yield due to recent climate trends," Nature, Nature, vol. 387(6632), pages 484-485, May.
    23. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirtti Ranjan Paltasingh & Phanindra Goyari, 2018. "Statistical Modeling of Crop-Weather Relationship in India: A Survey on Evolutionary Trend of Methodologies," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(1), pages 42-60, June.
    2. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
    3. Anubhab Pattanayak & K.S. Kavi Kumar, 2019. "Assessment of Climate Change Impacts and Adaptation: A Methodological Review and Application to Indian Agriculture," Working Papers 2019-183, Madras School of Economics,Chennai,India.
    4. Anubhab Pattanayak & K. S. Kavi Kumar, "undated". "Does Weather Sensitivity of Rice Yield Vary Across Regions? Evidence from Eastern and Southern India," Working Papers 2017-162, Madras School of Economics,Chennai,India.
    5. K.S. Kavi Kumar & Anubhab Pattanayak & Brinda Viswanathan & Ashish Chaturvedi, 2019. "Household Choice of Financial Borrowing and Its Source: Multinomial Probit Model with Selection," Working Papers 2019-182, Madras School of Economics,Chennai,India.
    6. Naveen Kumar & Dibyendu Maiti, 2024. "The Dynamic Causal Impact of Climate Change on Economic Activity - A Disaggregated Panel Analysis of India," Working papers 345, Centre for Development Economics, Delhi School of Economics.
    7. Jena, P.R. & Kalli, R., 2018. "Measuring the Impact of Climate Variability on Rice and Finger Millet: Empirical Evidence from a Drought Prone Region of India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275970, International Association of Agricultural Economists.
    8. Jiangying Guo & Jiwei Chen, 2022. "The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    9. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    10. Rama Rao, C.A. & Raju, B.M.K. & Rao, A.V.M.S. & D. Yella, Reddy & Meghana, Y.L. & Swapna, N. & Ravindra Chary, G., 2019. "Yield Vulnerability of Sorghum and Pearl Millet to Climate Change in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), July.
    11. Ruixue Wang & Roderick M. Rejesus & Jesse B. Tack & Joseph V. Balagtas & Andy D. Nelson, 2022. "Quantifying the Yield Sensitivity of Modern Rice Varieties to Warming Temperatures: Evidence from the Philippines," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 318-339, January.
    12. Chandra Sekhar Bahinipati & Vijay Kumar & P. K. Viswanathan, 2021. "An evidence-based systematic review on farmers’ adaptation strategies in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 399-418, April.
    13. Marco Letta & Pierluigi Montalbano & Guillaume Pierre, 2022. "Weather shocks, traders' expectations, and food prices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 1100-1119, May.
    14. Birthal, P.S. & Khan, T.M. & Negi, D.S. & Agarwal, S., 2014. "Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 27(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhadra Banda, 2013. "The Case of Slum Rehabilitation in Delhi," Working Papers id:5522, eSocialSciences.
    2. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    3. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    4. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    5. Nath, Hiranya K. & Mandal, Raju, 2018. "Heterogeneous Climatic Impacts on Agricultural Production: Evidence from Rice Yield in Assam, India," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(1), June.
    6. Shreekant Gupta & Partha Sen & Suchita Srinivasan, 2014. "Impact Of Climate Change On The Indian Economy: Evidence From Food Grain Yields," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-29.
    7. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    8. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    9. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    10. Andreas Exenberger & Andreas Pondorfer & Maik H. Wolters, 2014. "Estimating the impact of climate change on agricultural production: accounting for technology heterogeneity across countries," Working Papers 2014-16, Faculty of Economics and Statistics, Universität Innsbruck.
    11. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    12. Saravanakumar, V. & Balasubramanian, 2018. "Assessment of climate change impacts and adaptation strategies on Sorghum production in Tamil Nadu, India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276012, International Association of Agricultural Economists.
    13. Jolejole-Foreman, Maria Christina & Baylis, Katherine R. & Lipper, Leslie, 2012. "Land Degradation’s Implications on Agricultural Value of Production in Ethiopia: A look inside the bowl," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126251, International Association of Agricultural Economists.
    14. Anubhab Pattanayak & K. S. Kavi Kumar, "undated". "Does Weather Sensitivity of Rice Yield Vary Across Regions? Evidence from Eastern and Southern India," Working Papers 2017-162, Madras School of Economics,Chennai,India.
    15. Attavanich, Witsanu, 2013. "The Effect of Climate Change on Thailand’s Agriculture," MPRA Paper 84005, University Library of Munich, Germany, revised Feb 2014.
    16. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    17. Shahbaz Bhatti & Sarfraz Hassan & Khalid Mushtaq & Kamran Javed, 2020. "Investigation The Impact Of Climate Change On Productivity Of Cotton: Empirical Evidence From Cotton Zone," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 1-4, February.
    18. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66, September.
    19. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    20. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.

    More about this item

    Keywords

    Rice; India; climate change impacts; poverty;
    All these keywords.

    JEL classification:

    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:05:y:2014:i:04:n:s2010007814500110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.