IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i5p1125-1140.html
   My bibliography  Save this article

Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach

Author

Listed:
  • Cian Ryan
  • Finbarr Murphy
  • Martin Mullins

Abstract

The transition to semiautonomous driving is set to considerably reduce road accident rates as human error is progressively removed from the driving task. Concurrently, autonomous capabilities will transform the transportation risk landscape and significantly disrupt the insurance industry. Semiautonomous vehicle (SAV) risks will begin to alternate between human error and technological susceptibilities. The evolving risk landscape will force a departure from traditional risk assessment approaches that rely on historical data to quantify insurable risks. This article investigates the risk structure of SAVs and employs a telematics‐based anomaly detection model to assess split risk profiles. An unsupervised multivariate Gaussian (MVG) based anomaly detection method is used to identify abnormal driving patterns based on accelerometer and GPS sensors of manually driven vehicles. Parameters are inferred for vehicles equipped with semiautonomous capabilities and the resulting split risk profile is determined. The MVG approach allows for the quantification of vehicle risks by the relative frequency and severity of observed anomalies and a location‐based risk analysis is performed for a more comprehensive assessment. This approach contributes to the challenge of quantifying SAV risks and the methods employed here can be applied to evolving data sources pertinent to SAVs. Utilizing the vast amounts of sensor‐generated data will enable insurers to proactively reassess the collective performances of both the artificial driving agent and human driver.

Suggested Citation

  • Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:5:p:1125-1140
    DOI: 10.1111/risa.13217
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13217
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Desyllas, Panos & Sako, Mari, 2013. "Profiting from business model innovation: Evidence from Pay-As-You-Drive auto insurance," Research Policy, Elsevier, vol. 42(1), pages 101-116.
    3. Vinayak V Dixit & Sai Chand & Divya J Nair, 2016. "Autonomous Vehicles: Disengagements, Accidents and Reaction Times," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    4. Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    5. Lemaire, Jean & Park, Sojung Carol & Wang, Kili C., 2016. "The Use Of Annual Mileage As A Rating Variable," ASTIN Bulletin, Cambridge University Press, vol. 46(1), pages 39-69, January.
    6. Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jannusch, Tim & David-Spickermann, Florian & Shannon, Darren & Ressel, Juliane & Völler, Michaele & Murphy, Finbarr & Furxhi, Irini & Cunneen, Martin & Mullins, Martin, 2021. "Surveillance and privacy – Beyond the panopticon. An exploration of 720-degree observation in level 3 and 4 vehicle automation," Technology in Society, Elsevier, vol. 66(C).
    2. Darren Shannon & Tim Jannusch & Florian David‐Spickermann & Martin Mullins & Martin Cunneen & Finbarr Murphy, 2021. "Connected and autonomous vehicle injury loss events: Potential risk and actuarial considerations for primary insurers," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 5-35, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Min & Yili Hong & Caleb B. King & William Q. Meeker, 2022. "Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 987-1013, August.
    2. José Fernando Sabando Cárdenas & Jong Gyu Shin & Sang Ho Kim, 2020. "A Few Critical Human Factors for Developing Sustainable Autonomous Driving Technology," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    3. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    4. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    5. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    6. Mohamed Abdel-Aty & Shengxuan Ding, 2024. "A matched case-control analysis of autonomous vs human-driven vehicle accidents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ryan, Cian & Murphy, Finbarr & Mullins, Martin, 2020. "Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 152-163.
    8. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    9. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    10. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    12. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    13. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    14. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    15. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    16. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    17. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    18. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    19. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    20. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:5:p:1125-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.