IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp182-193.html
   My bibliography  Save this article

Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?

Author

Listed:
  • Kalra, Nidhi
  • Paddock, Susan M.

Abstract

How safe are autonomous vehicles? The answer is critical for determining how autonomous vehicles may shape motor vehicle safety and public health, and for developing sound policies to govern their deployment. One proposed way to assess safety is to test drive autonomous vehicles in real traffic, observe their performance, and make statistical comparisons to human driver performance. This approach is logical, but it is practical? In this paper, we calculate the number of miles of driving that would be needed to provide clear statistical evidence of autonomous vehicle safety. Given that current traffic fatalities and injuries are rare events compared to vehicle miles traveled, we show that fully autonomous vehicles would have to be driven hundreds of millions of miles and sometimes hundreds of billions of miles to demonstrate their reliability in terms of fatalities and injuries. Under even aggressive testing assumptions, existing fleets would take tens and sometimes hundreds of years to drive these miles—an impossible proposition if the aim is to demonstrate their performance prior to releasing them on the roads for consumer use. These findings demonstrate that developers of this technology and third-party testers cannot simply drive their way to safety. Instead, they will need to develop innovative methods of demonstrating safety and reliability. And yet, the possibility remains that it will not be possible to establish with certainty the safety of autonomous vehicles. Uncertainty will remain. Therefore, it is imperative that autonomous vehicle regulations are adaptive—designed from the outset to evolve with the technology so that society can better harness the benefits and manage the risks of these rapidly evolving and potentially transformative technologies.

Suggested Citation

  • Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:182-193
    DOI: 10.1016/j.tra.2016.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416302129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassens-Noor, Eva & Cai, Meng & Kotval-Karamchandani, Zeenat & Decaminada, Travis, 2021. "Autonomous vehicles and mobility for people with special needs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 385-397.
    2. Lavoie, Brenden & Ong, Felita & Habib, Khandker Nurul, 2024. "Relax on the way to work or work on the way to relax? Influences of vehicle interior on travel time perceptions in autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    5. Gruber, Mario, 2020. "An evolutionary perspective on adoption-diffusion theory," Journal of Business Research, Elsevier, vol. 116(C), pages 535-541.
    6. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    7. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    8. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    9. Salas Gironés, Edgar & van Est, Rinie & Verbong, Geert, 2020. "The role of policy entrepreneurs in defining directions of innovation policy: A case study of automated driving in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    11. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.
    12. Cassetta, Ernesto & Marra, Alessandro & Pozzi, Cesare & Antonelli, Paola, 2017. "Emerging technological trajectories and new mobility solutions. A large-scale investigation on transport-related innovative start-ups and implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 1-11.
    13. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    14. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    15. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.
    16. Namgung, Hyewon & Fujiwara, Akimasa & Yamamoto, Jenny & Zhang, Junyi, 2023. "Small and medium-sized taxi firm operators' stated choices of future business models: A case study in Japan based on hybrid choice model with panel effects," Research in Transportation Economics, Elsevier, vol. 101(C).
    17. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    18. Ostermeijer, Francis & Koster, Hans RA. & van Ommeren, Jos, 2019. "Residential parking costs and car ownership: Implications for parking policy and automated vehicles," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 276-288.
    19. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Gogoll, Jan & Uhl, Matthias, 2018. "Rage against the machine: Automation in the moral domain," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 74(C), pages 97-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:182-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.