IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48526-4.html
   My bibliography  Save this article

A matched case-control analysis of autonomous vs human-driven vehicle accidents

Author

Listed:
  • Mohamed Abdel-Aty

    (University of Central Florida)

  • Shengxuan Ding

    (University of Central Florida)

Abstract

Despite the recent advancements that Autonomous Vehicles have shown in their potential to improve safety and operation, considering differences between Autonomous Vehicles and Human-Driven Vehicles in accidents remain unidentified due to the scarcity of real-world Autonomous Vehicles accident data. We investigated the difference in accident occurrence between Autonomous Vehicles’ levels and Human-Driven Vehicles by utilizing 2100 Advanced Driving Systems and Advanced Driver Assistance Systems and 35,113 Human-Driven Vehicles accident data. A matched case-control design was conducted to investigate the differential characteristics involving Autonomous’ versus Human-Driven Vehicles’ accidents. The analysis suggests that accidents of vehicles equipped with Advanced Driving Systems generally have a lower chance of occurring than Human-Driven Vehicles in most of the similar accident scenarios. However, accidents involving Advanced Driving Systems occur more frequently than Human-Driven Vehicle accidents under dawn/dusk or turning conditions, which is 5.25 and 1.98 times higher, respectively. Our research reveals the accident risk disparities between Autonomous Vehicles and Human-Driven Vehicles, informing future development in Autonomous technology and safety enhancements.

Suggested Citation

  • Mohamed Abdel-Aty & Shengxuan Ding, 2024. "A matched case-control analysis of autonomous vs human-driven vehicle accidents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48526-4
    DOI: 10.1038/s41467-024-48526-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48526-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48526-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee, Dasom & Hess, David J., 2020. "Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 85-98.
    2. Vinayak V Dixit & Sai Chand & Divya J Nair, 2016. "Autonomous Vehicles: Disengagements, Accidents and Reaction Times," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    3. Fleetwood, J., 2017. "Public health, ethics, and autonomous vehicles," American Journal of Public Health, American Public Health Association, vol. 107(4), pages 532-537.
    4. repec:aph:ajpbhl:10.2105/ajph.2016.303628_6 is not listed on IDEAS
    5. Amolika Sinha & Vincent Vu & Sai Chand & Kasun Wijayaratna & Vinayak Dixit, 2021. "A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    6. Izaz Raouf & Asif Khan & Salman Khalid & Muhammad Sohail & Muhammad Muzammil Azad & Heung Soo Kim, 2022. "Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey," Mathematics, MDPI, vol. 10(18), pages 1-26, September.
    7. Song Wang & Zhixia Li, 2019. "Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    8. Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    2. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
    3. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    4. Jie Min & Yili Hong & Caleb B. King & William Q. Meeker, 2022. "Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 987-1013, August.
    5. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 0. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    6. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1227-1249, December.
    7. Ryan, Cian & Murphy, Finbarr & Mullins, Martin, 2020. "Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 152-163.
    8. Andrea Bertolini & Massimo Riccaboni, 2021. "Grounding the case for a European approach to the regulation of automated driving: the technology-selection effect of liability rules," European Journal of Law and Economics, Springer, vol. 51(2), pages 243-284, April.
    9. Lili Zheng & Yanlin Zhang & Tongqiang Ding & Fanyun Meng & Yanlin Li & Shiyu Cao, 2022. "Classification of Driver Distraction Risk Levels: Based on Driver’s Gaze and Secondary Driving Tasks," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    10. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Nordhoff, Sina & Stapel, Jork & van Arem, Bart & Happee, Riender, 2020. "Passenger opinions of the perceived safety and interaction with automated shuttles: A test ride study with ‘hidden’ safety steward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 508-524.
    12. Yueqi Mao & Qiang Mei & Peng Jing & Ye Zha & Ying Xue & Jiahui Huang & Danning Shao & Pan Luo, 2022. "Factors Affecting the Parental Intention of Using AVs to Escort Children: An Integrated SEM–Hybrid Choice Model Approach," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    13. Anania, Emily C. & Rice, Stephen & Walters, Nathan W. & Pierce, Matthew & Winter, Scott R. & Milner, Mattie N., 2018. "The effects of positive and negative information on consumers’ willingness to ride in a driverless vehicle," Transport Policy, Elsevier, vol. 72(C), pages 218-224.
    14. Blume, Maximilian & Oberländer, Anna Maria & Röglinger, Maximilian & Rosemann, Michael & Wyrtki, Katrin, 2020. "Ex ante assessment of disruptive threats: Identifying relevant threats before one is disrupted," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Mohammad A. R. Abdeen & Ansar Yasar & Mohamed Benaida & Tarek Sheltami & Dimitrios Zavantis & Youssef El-Hansali, 2022. "Evaluating the Impacts of Autonomous Vehicles’ Market Penetration on a Complex Urban Freeway during Autonomous Vehicles’ Transition Period," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    16. Peng Liu & Run Yang & Zhigang Xu, 2019. "How Safe Is Safe Enough for Self‐Driving Vehicles?," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 315-325, February.
    17. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    18. Henry X. Liu & Shuo Feng, 2024. "Curse of rarity for autonomous vehicles," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    19. Winston, Clifford & Karpilow, Quentin, 2017. "A New Route to Increasing Economic Growth: Reducing Highway Congestion with Autonomous Vehicles," Working Papers 03323, George Mason University, Mercatus Center.
    20. Zoltan Ferenc Magosi & Christoph Wellershaus & Viktor Roland Tihanyi & Patrick Luley & Arno Eichberger, 2022. "Evaluation Methodology for Physical Radar Perception Sensor Models Based on On-Road Measurements for the Testing and Validation of Automated Driving," Energies, MDPI, vol. 15(7), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48526-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.