IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i5ne2677.html
   My bibliography  Save this article

Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment

Author

Listed:
  • Maria A. Sans‐Fuentes
  • Walter W. Piegorsch

Abstract

Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. This article extends the single‐dose BMD paradigm to a mixed‐factor setting with a secondary qualitative factor possessing two levels. With focus on quantal‐response data and using a generalized linear model with a complementary‐log link function, we derive expressions for BMD and BMDL. We study the operating characteristics of six different multiplicity‐adjusted approaches to calculate the BMDL, using Monte Carlo evaluations. We illustrate the calculations via an example dataset from environmental carcinogenicity testing.

Suggested Citation

  • Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2677
    DOI: 10.1002/env.2677
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2677
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    2. Walter W. Piegorsch & Lingling An & Alissa A. Wickens & R. Webster West & Edsel A. Peña & Wensong Wu, 2013. "Information‐theoretic model‐averaged benchmark dose analysis in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 143-157, May.
    3. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    4. Roland C. Deutsch & Walter W. Piegorsch, 2012. "Benchmark Dose Profiles for Joint-Action Quantal Data in Quantitative Risk Assessment," Biometrics, The International Biometric Society, vol. 68(4), pages 1313-1322, December.
    5. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    6. Lelys Bravo Guenni & Susan J. Simmons & R. Webster West & Walter W. Piegorsch & Edsel A. Peña & Lingling An & Wensong Wu & Alissa A. Wickens & Hui Xiong & Wenhai Chen, 2012. "The impact of model uncertainty on benchmark dose estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 706-716, December.
    7. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    8. Antonio Canale & Daniele Durante & David B. Dunson, 2018. "Convex mixture regression for quantitative risk assessment," Biometrics, The International Biometric Society, vol. 74(4), pages 1331-1340, December.
    9. Naha J. Farhat & Edward L. Boone & David J. Edwards, 2020. "A new method for determining the benchmark dose tolerable region and endpoint probabilities for toxicology experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(5), pages 775-803, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    5. Lizhen Lin & Walter W. Piegorsch & Rabi Bhattacharya, 2015. "Nonparametric Benchmark Dose Estimation with Continuous Dose-Response Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 713-731, September.
    6. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
    7. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    8. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    9. Jessica Kratchman & Bing Wang & John Fox & George Gray, 2018. "Correlation of Noncancer Benchmark Doses in Short‐ and Long‐Term Rodent Bioassays," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 1052-1069, May.
    10. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    11. Keiko Kubo & Kazuhiro Nogawa & Teruhiko Kido & Muneko Nishijo & Hideaki Nakagawa & Yasushi Suwazono, 2017. "Estimation of Benchmark Dose of Lifetime Cadmium Intake for Adverse Renal Effects Using Hybrid Approach in Inhabitants of an Environmentally Exposed River Basin in Japan," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 20-26, January.
    12. David W. Gaylor & William Slikker, 2004. "Role of the Standard Deviation in the Estimation of Benchmark Doses with Continuous Data," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1683-1687, December.
    13. Harvey J. Clewell & Gregory A. Lawrence & Donald B. Calne & Kenny S. Crump, 2003. "Determination of an Occupational Exposure Guideline for Manganese Using the Benchmark Method," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1031-1046, October.
    14. Jingyu Liu & Walter W. Piegorsch & A. Grant Schissler & Susan L. Cutter, 2018. "Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 803-823, June.
    15. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    16. Mehdi Razzaghi & Ralph L. Kodell, 2000. "Risk Assessment for Quantitative Responses Using a Mixture Model," Biometrics, The International Biometric Society, vol. 56(2), pages 519-527, June.
    17. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    18. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.
    19. Matthew W. Wheeler & Walter W. Piegorsch & Albert John Bailer, 2019. "Quantal Risk Assessment Database: A Database for Exploring Patterns in Quantal Dose‐Response Data in Risk Assessment and its Application to Develop Priors for Bayesian Dose‐Response Analysis," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 616-629, March.
    20. Roland C. Deutsch & Walter W. Piegorsch, 2012. "Benchmark Dose Profiles for Joint-Action Quantal Data in Quantitative Risk Assessment," Biometrics, The International Biometric Society, vol. 68(4), pages 1313-1322, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.