IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v19y1999i3p453-459.html
   My bibliography  Save this article

A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data

Author

Listed:
  • R. Webster West
  • Ralph L. Kodell

Abstract

Methods of quantitative risk assessment for toxic responses that are measured on a continuous scale are not well established. Although risk‐assessment procedures that attempt to utilize the quantitative information in such data have been proposed, there is no general agreement that these procedures are appreciably more efficient than common quantal dose‐response procedures that operate on dichotomized continuous data. This paper points out an equivalence between the dose‐response models of the nonquantal approach of Kodell and West(1)) and a quantal probit procedure, and provides results from a Monte Carlo simulation study to compare coverage probabilities of statistical lower confidence limits on dose corresponding to specified additional risk based on applying the two procedures to continuous data from a dose‐response experiment. The nonquantal approach is shown to be superior, in terms of both statistical validity and statistical efficiency.

Suggested Citation

  • R. Webster West & Ralph L. Kodell, 1999. "A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 453-459, June.
  • Handle: RePEc:wly:riskan:v:19:y:1999:i:3:p:453-459
    DOI: 10.1111/j.1539-6924.1999.tb00420.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1999.tb00420.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1999.tb00420.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    2. D. Krewski & Y. Zhu, 1995. "A Simple Data Transformation for Estimating Benchmark Doses in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 29-39, February.
    3. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    2. Miwako Dakeishi & Katsuyuki Murata & Akiko Tamura & Toyoto Iwata, 2006. "Relation Between Benchmark Dose and No‐Observed‐Adverse‐Effect Level in Clinical Research: Effects of Daily Alcohol Intake on Blood Pressure in Japanese Salesmen," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 115-123, February.
    3. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    4. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    5. Matteo Goldoni & Maria Vittoria Vettori & Rossella Alinovi & Andrea Caglieri & Sandra Ceccatelli & Antonio Mutti, 2003. "Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 505-514, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    2. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    3. John F. Fox & Karen A. Hogan & Allen Davis, 2017. "Dose‐Response Modeling with Summary Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 905-917, May.
    4. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    6. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    7. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    8. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    9. Mehdi Razzaghi & Ralph L. Kodell, 2000. "Risk Assessment for Quantitative Responses Using a Mixture Model," Biometrics, The International Biometric Society, vol. 56(2), pages 519-527, June.
    10. Faes, Christel & Geys, Helena & Aerts, Marc & Molenberghs, Geert, 2006. "A hierarchical modeling approach for risk assessment in developmental toxicity studies," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1848-1861, December.
    11. Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
    12. Mehdi Razzaghi & Ralph Kodell, 2004. "Quantitative Risk Assessment for Developmental Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1673-1681, December.
    13. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    14. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    15. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    16. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    17. Daniel Krewski & Robert Smythe & Karen Y. Fung, 2002. "Optimal Designs for Estimating the Effective Dose in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1195-1205, December.
    18. Karen Y. Fung & Leonora Marro & Daniel Krewski, 1998. "A Comparison of Methods for Estimating the Benchmark Dose Based on Overdispersed Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 329-342, June.
    19. Liu, Rui-Yin & Tao, Jian & Shi, Ning-Zhong & He, Xuming, 2011. "Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1498-1508, March.
    20. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:19:y:1999:i:3:p:453-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.