IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v55y1999i3p760-768.html
   My bibliography  Save this article

Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology

Author

Listed:
  • Meredith M. Regan
  • Paul J. Catalano

Abstract

No abstract is available for this item.

Suggested Citation

  • Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
  • Handle: RePEc:bla:biomet:v:55:y:1999:i:3:p:760-768
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.1999.00760.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Catalano & Louise Ryan & Daniel Scharfstein, 1994. "Modeling Fetal Death and Malformation in Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 629-637, August.
    2. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    3. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    4. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julie S. Najita & Yi Li & Paul J. Catalano, 2009. "A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 555-573, September.
    2. Zi-Fan Yu & Paul J. Catalano, 2005. "Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case," Biometrics, The International Biometric Society, vol. 61(3), pages 757-766, September.
    3. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    4. Zi‐Fan Yu & Paul J. Catzlano, 2008. "A Simulation Study of Quantitative Risk Assessment for Bivariate Continuous Outcomes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1415-1430, October.
    5. Ling Zhou & Huazhen Lin & Xinyuan Song & Yi Li, 2014. "Selection of Latent Variables for Multiple Mixed-outcome Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1064-1082, December.
    6. Ralitza V. Gueorguieva, 2005. "Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 61(3), pages 862-866, September.
    7. Kassandra Fronczyk & Athanasios Kottas, 2017. "Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 585-601, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    2. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    3. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    4. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    5. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    6. Mehdi Razzaghi & Ralph L. Kodell, 2000. "Risk Assessment for Quantitative Responses Using a Mixture Model," Biometrics, The International Biometric Society, vol. 56(2), pages 519-527, June.
    7. Mehdi Razzaghi & Ralph Kodell, 2004. "Quantitative Risk Assessment for Developmental Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1673-1681, December.
    8. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    9. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    10. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    11. Liu, Rui-Yin & Tao, Jian & Shi, Ning-Zhong & He, Xuming, 2011. "Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1498-1508, March.
    12. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    13. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    14. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    15. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    16. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    17. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    18. Katsuyuki Murata & Esben Budtz‐Jørgensen & Philippe Grandjean, 2002. "Benchmark Dose Calculations for Methylmercury‐Associated Delays on Evoked Potential Latencies in Two Cohorts of Children," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 465-474, June.
    19. Zi-Fan Yu & Paul J. Catalano, 2005. "Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case," Biometrics, The International Biometric Society, vol. 61(3), pages 757-766, September.
    20. Kenny S. Grump & Tord Kjellström & Annette M. Shipp & Abraham Silvers & Alistair Stewart, 1998. "Influence of Prenatal Mercury Exposure Upon Scholastic and Psychologica Test Performance: Benchmark Analysis of a New Zealand Cohort," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 701-713, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:55:y:1999:i:3:p:760-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.