IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v15y1995i1p79-89.html
   My bibliography  Save this article

Calculation of Benchmark Doses from Continuous Data

Author

Listed:
  • Kenny S. Crump

Abstract

A benchmark dose (BMD) is the dose of a substance that corresponds to a prescribed increase in the response (called the benchmark response or BMR) of a health effect. A statistical lower bound on the benchmark dose (BMDL) has been proposed as a replacement for the no‐observed‐adverse‐effect‐level (NOAEL) in setting acceptable human exposure levels. A method is developed in this paper for calculating BMDs and BMDLs from continuous data in a manner that is consistent with those calculated from quantal data. The method involves defining an abnormal response, either directly by specifying a cutoff x0 that separates continuous responses into normal and abnormal categories, or indirectly by specifying the proportion P0 of abnormal responses expected among unexposed subjects. The method does not involve actually dichotomizing individual continuous responses into quantal responses, and in certain cases can be applied to continuous data in summarized form (e.g., means and standard deviations of continuous responses among subjects in discrete dose groups). In addition to specifying the BMR and either x0 or P0, the method requires specification of the distribution of continuous responses, including specification of the dose‐response θ(d) for a measure of central tendency. A method is illustrated for selecting θ(d) to make the probability of an abnormal response any desired dose‐response function. This enables the same dose‐response model (Weibull, log‐logistic, etc.) to be used for the probability of an abnormal response, regardless of whether the underlying data are continuous or quantal. Whenever the continuous responses are normally distributed with standard deviation σ (independent of dose), the method is equivalent to defining the BMD as the dose corresponding to a prescribed change in the mean response relative to σ.

Suggested Citation

  • Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
  • Handle: RePEc:wly:riskan:v:15:y:1995:i:1:p:79-89
    DOI: 10.1111/j.1539-6924.1995.tb00095.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1995.tb00095.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1995.tb00095.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    2. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    3. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    4. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    5. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    6. R. Webster West & Ralph L. Kodell, 1999. "A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 453-459, June.
    7. Mehdi Razzaghi & Ralph L. Kodell, 2000. "Risk Assessment for Quantitative Responses Using a Mixture Model," Biometrics, The International Biometric Society, vol. 56(2), pages 519-527, June.
    8. Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
    9. Mehdi Razzaghi & Ralph Kodell, 2004. "Quantitative Risk Assessment for Developmental Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1673-1681, December.
    10. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    11. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    12. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    13. Liu, Rui-Yin & Tao, Jian & Shi, Ning-Zhong & He, Xuming, 2011. "Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1498-1508, March.
    14. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    15. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:15:y:1995:i:1:p:79-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.