IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v67y2020i8p685-704.html
   My bibliography  Save this article

Optimal production ramp‐up in the smartphone manufacturing industry

Author

Listed:
  • Lu Wang
  • Wenqing Ai
  • Tianhu Deng
  • Zuo‐Jun M. Shen
  • Changjing Hong

Abstract

Motivated by challenges in the smartphone manufacturing industry, we develop a dynamic production ramp‐up model that can be applied to economically satisfy nonstationary demand for short‐life‐cycle products by high‐tech companies. Due to shorter life cycles and more rapid evolution of smartphones, production ramp‐up has been increasingly critical to the success of a new smartphone. In the production ramp‐up, the key challenge is to match the increasing capacity to nonstationary demand. The high‐tech smartphone manufacturers are urged to jointly consider the effect of increasing capacity and decreasing demand. We study the production planning problem using a high‐dimensional Markov decision process (MDP) model to characterize the production ramp‐up. To address the curse of dimensionality, we refine Monte Carlo tree search (MCTS) algorithm and theoretically analyze its convergence and computational complexity. In a real case study, we find that the MDP model achieves revenue improvement by stopping producing the existing product earlier than the benchmark policy. In synthetic instances, we validate that the proposed MCTS algorithm saves computation time without loss of solution quality compared with traditional value iteration algorithm. As part of the Lenovo production solution, our MDP model enables high‐tech smartphone manufacturers to better plan the production ramp‐up.

Suggested Citation

  • Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
  • Handle: RePEc:wly:navres:v:67:y:2020:i:8:p:685-704
    DOI: 10.1002/nav.21886
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21886
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Glock, C. H. & Jaber, M. Y. & Zolfaghari, S., 2012. "Production planning for a ramp-up process with learning in production and growth in demand," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57818, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    3. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    4. Jyri Kontio & Harri Haapasalo, 2005. "A Project Model In Managing Production Ramp-Up — A Case Study In Wire Harness Industry," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 101-117.
    5. Kejia Hu & Jason Acimovic & Francisco Erize & Douglas J. Thomas & Jan A. Van Mieghem, 2019. "Forecasting New Product Life Cycle Curves: Practical Approach and Empirical Analysis," Service Science, INFORMS, vol. 21(1), pages 66-85, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    3. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    4. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    5. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    6. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    8. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    9. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    10. Justin J. Boutilier & Timothy C. Y. Chan, 2023. "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 64-83, January.
    11. Haoran Wang, 2019. "Large scale continuous-time mean-variance portfolio allocation via reinforcement learning," Papers 1907.11718, arXiv.org, revised Aug 2019.
    12. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    13. Christopher R. Madan, 2020. "Considerations for Comparing Video Game AI Agents with Humans," Challenges, MDPI, vol. 11(2), pages 1-12, August.
    14. Oleg Szehr, 2021. "Hedging of Financial Derivative Contracts via Monte Carlo Tree Search," Papers 2102.06274, arXiv.org, revised Apr 2021.
    15. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    16. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 61-87, National Bureau of Economic Research, Inc.
    17. Loris Cannelli & Giuseppe Nuti & Marzio Sala & Oleg Szehr, 2020. "Hedging using reinforcement learning: Contextual $k$-Armed Bandit versus $Q$-learning," Papers 2007.01623, arXiv.org, revised Feb 2022.
    18. Minkyu Shin & Jin Kim & Minkyung Kim, 2020. "Measuring Human Adaptation to AI in Decision Making: Application to Evaluate Changes after AlphaGo," Papers 2012.15035, arXiv.org, revised Jan 2021.
    19. Xiaoyu Zhang & Rongheng Lin & Yuchang Bo & Fangchun Yang, 2022. "The Synergy of Double Neural Networks for Bridge Bidding," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    20. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:67:y:2020:i:8:p:685-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.