IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v23y2023i2p64-83.html
   My bibliography  Save this article

Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course

Author

Listed:
  • Justin J. Boutilier

    (Department of Industrial and Systems Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706)

  • Timothy C. Y. Chan

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 1A1, Canada)

Abstract

Artificial intelligence (AI) and operations research (OR) have long been intertwined because of their synergistic relationship. Given the increasing popularity of AI and machine learning in particular, we face growing demand for educational offerings in this area from our students. This paper describes two courses that introduce machine learning concepts to undergraduate, predominantly industrial engineering and operations research students. Instead of taking a methods-first approach, these courses use real-world applications to motivate, introduce, and explore these machine learning techniques and highlight meaningful overlap with operations research. Significant hands-on coding experience is used to build student proficiency with the techniques. Student feedback indicates that these courses have greatly increased student interest in machine learning and appreciation of the real-world impact that analytics can have and helped students develop practical skills that they can apply. We believe that similar application-driven courses that connect machine learning and operations research would be valuable additions to undergraduate OR curricula broadly.

Suggested Citation

  • Justin J. Boutilier & Timothy C. Y. Chan, 2023. "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 64-83, January.
  • Handle: RePEc:inm:orited:v:23:y:2023:i:2:p:64-83
    DOI: 10.1287/ited.2021.0256
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ited.2021.0256
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2021.0256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy C. Y. Chan & Justin A. Cho & David C. Novati, 2012. "Quantifying the Contribution of NHL Player Types to Team Performance," Interfaces, INFORMS, vol. 42(2), pages 131-145, April.
    2. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    5. Ashenfelter, Orley, 2010. "Predicting the Quality and Prices of Bordeaux Wine," Journal of Wine Economics, Cambridge University Press, vol. 5(1), pages 40-52, April.
    6. Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
    7. Alex Chohlas-Wood & E. S. Levine, 2019. "A Recommendation Engine to Aid in Identifying Crime Patterns," Interfaces, INFORMS, vol. 49(2), pages 154-166, March.
    8. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    9. Lawrence H. Riddle, 1988. "Probability Models for Tennis Scoring Systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 63-75, March.
    10. Lawrence H. Riddle, 1988. "Probability Models for Tennis Scoring Systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(3), pages 490-490, November.
    11. Brendan K. Eagen & Timothy C. Y. Chan & Michael W. Carter, 2018. "Women’s College Hospital Uses Operations Research to Create an Ambulatory Clinic Schedule," Service Science, INFORMS, vol. 10(3), pages 230-240, September.
    12. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    13. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    14. Timothy C. Y. Chan & Derya Demirtas & Roy H. Kwon, 2016. "Optimizing the Deployment of Public Access Defibrillators," Management Science, INFORMS, vol. 62(12), pages 3617-3635, December.
    15. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    2. Chan, Timothy C.Y. & Kaw, Neal, 2020. "Inverse optimization for the recovery of constraint parameters," European Journal of Operational Research, Elsevier, vol. 282(2), pages 415-427.
    3. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    4. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    5. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    6. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    7. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    8. D F Percy, 2009. "A mathematical analysis of badminton scoring systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 63-71, January.
    9. Chacoma, Andrés & Billoni, Orlando V., 2023. "Probabilistic model for Padel games dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Lai, Jianfa & Weng, Lin-Chen & Peng, Xiaoling & Fang, Kai-Tai, 2022. "Construction of symmetric orthogonal designs with deep Q-network and orthogonal complementary design," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    11. Klaassen, F.J.G.M. & Magnus, J.R., 1998. "On the Independence and Identical Distribution of Points in Tennis," Other publications TiSEM 395a6222-6318-49b5-a42c-6, Tilburg University, School of Economics and Management.
    12. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    13. Haoran Wang, 2019. "Large scale continuous-time mean-variance portfolio allocation via reinforcement learning," Papers 1907.11718, arXiv.org, revised Aug 2019.
    14. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    15. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    16. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    17. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    18. Ricardo S. Alonso & Inés Sittón-Candanedo & Roberto Casado-Vara & Javier Prieto & Juan M. Corchado, 2020. "Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    19. Kenshi Abe & Yusuke Kaneko, 2020. "Off-Policy Exploitability-Evaluation in Two-Player Zero-Sum Markov Games," Papers 2007.02141, arXiv.org, revised Dec 2020.
    20. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:23:y:2023:i:2:p:64-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.