Large scale continuous-time mean-variance portfolio allocation via reinforcement learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ang, Andrew & Gorovyy, Sergiy & van Inwegen, Gregory B., 2011.
"Hedge fund leverage,"
Journal of Financial Economics, Elsevier, vol. 102(1), pages 102-126, October.
- Andrew Ang & Sergiy Gorovyy & Gregory B. van Inwegen, 2011. "Hedge Fund Leverage," NBER Working Papers 16801, National Bureau of Economic Research, Inc.
- Haoran Wang & Xun Yu Zhou, 2019. "Continuous-Time Mean-Variance Portfolio Selection: A Reinforcement Learning Framework," Papers 1904.11392, arXiv.org, revised May 2019.
- Mannor, Shie & Tsitsiklis, John N., 2013. "Algorithmic aspects of mean–variance optimization in Markov decision processes," European Journal of Operational Research, Elsevier, vol. 231(3), pages 645-653.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
- Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
- Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
- Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
- Huy Chau & Duy Nguyen & Thai Nguyen, 2024. "Continuous-time optimal investment with portfolio constraints: a reinforcement learning approach," Papers 2412.10692, arXiv.org.
- Zhou Fang, 2023. "Electricity Virtual Bidding Strategy Via Entropy-Regularized Stochastic Control Method," Papers 2303.02303, arXiv.org.
- Gang Huang & Xiaohua Zhou & Qingyang Song, 2020. "Deep reinforcement learning for portfolio management," Papers 2012.13773, arXiv.org, revised Apr 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
- Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
- Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
- Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
- Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
- Huy Chau & Duy Nguyen & Thai Nguyen, 2024. "Continuous-time optimal investment with portfolio constraints: a reinforcement learning approach," Papers 2412.10692, arXiv.org.
- Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
- Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
- Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
- Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
- Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
- Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
- Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.
- Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Yi Cheng & Chuzhi Zhao & Pradeep Neupane & Bradley Benjamin & Jiawei Wang & Tongsheng Zhang, 2023. "Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis," Energies, MDPI, vol. 16(3), pages 1-15, January.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-08-26 (Big Data)
- NEP-CMP-2019-08-26 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.11718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.