IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v53y2006i4p243-260.html
   My bibliography  Save this article

Approximation algorithms for minimizing total weighted completion time of orders on identical machines in parallel

Author

Listed:
  • Joseph Y‐T. Leung
  • Haibing Li
  • Michael Pinedo

Abstract

We consider the problem of scheduling orders on identical machines in parallel. Each order consists of one or more individual jobs. A job that belongs to an order can be processed by any one of the machines. Multiple machines can process the jobs of an order concurrently. No setup is required if a machine switches over from one job to another. Each order is released at time zero and has a positive weight. Preemptions are not allowed. The completion time of an order is the time at which all jobs of that order have been completed. The objective is to minimize the total weighted completion time of the orders. The problem is NP‐hard for any fixed number (≥2) of machines. Because of this, we focus our attention on two classes of heuristics, which we refer to as sequential two‐phase heuristics and dynamic two‐phase heuristics. We perform a worst case analysis as well as an empirical analysis of nine heuristics. Our analyses enable us to rank these heuristics according to their effectiveness, taking solution quality as well as running time into account. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006

Suggested Citation

  • Joseph Y‐T. Leung & Haibing Li & Michael Pinedo, 2006. "Approximation algorithms for minimizing total weighted completion time of orders on identical machines in parallel," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 243-260, June.
  • Handle: RePEc:wly:navres:v:53:y:2006:i:4:p:243-260
    DOI: 10.1002/nav.20138
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20138
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang Sup Sung & Sang Hum Yoon, 1998. "Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines," International Journal of Production Economics, Elsevier, vol. 54(3), pages 247-255, May.
    2. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José R. Correa & Martin Skutella & José Verschae, 2012. "The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 379-398, May.
    2. Xiaoling Cao & Wen-Hsing Wu & Wen-Hung Wu & Chin-Chia Wu, 2018. "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times," Operational Research, Springer, vol. 18(2), pages 293-314, July.
    3. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    4. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    5. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T.C. Edwin Cheng & Qingqin Nong & Chi To Ng, 2011. "Polynomial‐time approximation scheme for concurrent open shop scheduling with a fixed number of machines to minimize the total weighted completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 763-770, December.
    2. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    3. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    4. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    5. Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
    6. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    7. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    8. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    9. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    10. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "On the convexity of step out–step in sequencing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 68-109, April.
    11. Leung, Joseph Y-T. & Li, Haibing & Pinedo, Michael & Sriskandarajah, Chelliah, 2005. "Open shops with jobs overlap--revisited," European Journal of Operational Research, Elsevier, vol. 163(2), pages 569-571, June.
    12. Musegaas, M. & Borm, P.E.M. & Quant, M., 2015. "Step out–Step in sequencing games," European Journal of Operational Research, Elsevier, vol. 246(3), pages 894-906.
    13. Atay, Ata & Trudeau, Christian, 2024. "Queueing games with an endogenous number of machines," Games and Economic Behavior, Elsevier, vol. 144(C), pages 104-125.
    14. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    15. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    16. Yang, Guangjing & Sun, Hao & Hou, Dongshuang & Xu, Genjiu, 2019. "Games in sequencing situations with externalities," European Journal of Operational Research, Elsevier, vol. 278(2), pages 699-708.
    17. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    18. De, Parikshit & Mitra, Manipushpak, 2019. "Balanced implementability of sequencing rules," Games and Economic Behavior, Elsevier, vol. 118(C), pages 342-353.
    19. Shen, Zuo-Jun Max & Xie, Jingui & Zheng, Zhichao & Zhou, Han, 2023. "Dynamic scheduling with uncertain job types," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1047-1060.
    20. Lohmann, E.R.M.A. & Borm, P.E.M. & Slikker, M., 2010. "Preparation Sequencing Situations and Related Games," Other publications TiSEM 667d8f5d-4c0d-4610-970d-6, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:53:y:2006:i:4:p:243-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.