IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i6p944-956.html
   My bibliography  Save this article

Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models

Author

Listed:
  • Zeynep Ceylan

Abstract

Agricultural productivity highly depends on the cost of energy required for cultivation. Thus prior knowledge of energy consumption is an important step for energy planning and policy development in agriculture. The aim of the present study is to evaluate the application potential of multiple linear regression (MLR) and machine learning tools such as support vector regression (SVR) and Gaussian process regression (GPR) to forecast the agricultural energy consumption of Turkey. In the development of the models, widespread indicators such as agricultural value‐added, total arable land, gross domestic product share of agriculture, and population data were used as input parameters. Twenty‐eight‐year historical data from 1990 to 2017 were utilized for the training and testing stages of the models. A Bayesian optimization method was applied to improve the prediction capability of SVR and GPR models. The performance of the models was measured by various statistical tools. The results indicated that the Bayesian optimized GPR (BGPR) model with exponential kernel function showed a superior prediction capability over MLR and Bayesian optimized SVR model. The root mean square error, mean absolute deviation, mean absolute percentage error, and coefficient of determination (R2) values for the BGPR model were determined as 0.0022, 0.0005, 0.2041, and 0.9999 in the training phase and 0.0452, 0.0310, 7.7152, and 0.9677 in the testing phase, respectively. As a result, it can be concluded that the proposed BGPR model is an efficient technique and has the potential to predict agricultural energy consumption with high accuracy.

Suggested Citation

  • Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:944-956
    DOI: 10.1002/for.2673
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2673
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abdulkerim Karaaslan & Mesliha Gezen, 2017. "Forecasting of Turkey s Sectoral Energy Demand by Using Fuzzy Grey Regression Model," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 67-77.
    2. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    3. Yaein Baek, 2019. "Forecasting in long horizons using smoothed direct forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 277-292, July.
    4. Karkacier, Osman & Gokalp Goktolga, Z. & Cicek, Adnan, 2006. "A regression analysis of the effect of energy use in agriculture," Energy Policy, Elsevier, vol. 34(18), pages 3796-3800, December.
    5. Hoolohan, Victoria & Tomlin, Alison S. & Cockerill, Timothy, 2018. "Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data," Renewable Energy, Elsevier, vol. 126(C), pages 1043-1054.
    6. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    7. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Li, Wenzhe & Hsu, Yuan-Ming & Lee, Jay, 2020. "Gaussian Process Regression for numerical wind speed prediction enhancement," Renewable Energy, Elsevier, vol. 146(C), pages 2112-2123.
    8. Zheng, Saina & Lam, Chor-Man & Hsu, Shu-Chien & Ren, Jingzheng, 2018. "Evaluating efficiency of energy conservation measures in energy service companies in China," Energy Policy, Elsevier, vol. 122(C), pages 580-591.
    9. Fei, Rilong & Lin, Boqiang, 2017. "Estimates of energy demand and energy saving potential in China's agricultural sector," Energy, Elsevier, vol. 135(C), pages 865-875.
    10. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    11. Lotfali Agheli, 2015. "Estimating the Demand for Diesel in Agriculture Sector of Iran," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 660-667.
    12. Xiang Xu, 2020. "Forecasting air pollution PM2.5 in Beijing using weather data and multiple kernel learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 117-125, March.
    13. Andreas Karathanasopoulos & Mohammed Osman, 2019. "Forecasting the Dubai financial market with a combination of momentum effect with a deep belief network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 346-353, July.
    14. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeynep Ceylan & Abdulkadir Atalan, 2021. "Estimation of healthcare expenditure per capita of Turkey using artificial intelligence techniques with genetic algorithm‐based feature selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 279-290, March.
    2. Chin-Hung Kuan & Yungho Leu & Wen-Shin Lin & Chien-Pang Lee, 2022. "The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
    3. Wang, Wei & Guo, Lihuan & Wu, Yenchun Jim, 2022. "The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    2. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    3. Yongxi Ma & Lu Zhang & Shixiong Song & Shuao Yu, 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    4. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    5. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Li, Wenzhe & Li, Fei & Lee, Jay, 2021. "A unified Bayesian filtering framework for multi-horizon wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 178(C), pages 709-719.
    6. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    7. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
    8. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    9. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    10. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    11. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    12. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    13. Nan Li & Hailin Mu & Huanan Li & Shusen Gui, 2012. "Diesel Consumption of Agriculture in China," Energies, MDPI, vol. 5(12), pages 1-24, December.
    14. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    15. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    16. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    17. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    18. Ali, Akhter & Rahut, Dil Bahadur & Imtiaz, Muhammad, 2019. "Effects of Pakistan's energy crisis on farm households," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    19. Elham Bolandnazar & Hassan Sadrnia & Abbas Rohani & Francesco Marinello & Morteza Taki, 2023. "Application of Artificial Intelligence for Modeling the Internal Environment Condition of Polyethylene Greenhouses," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    20. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:944-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.