Forecasting of Turkey s Sectoral Energy Demand by Using Fuzzy Grey Regression Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
- Kucukali, Serhat & Baris, Kemal, 2010. "Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach," Energy Policy, Elsevier, vol. 38(5), pages 2438-2445, May.
- Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
- Ediger, Volkan S. & Akar, Sertac & Ugurlu, Berkin, 2006. "Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model," Energy Policy, Elsevier, vol. 34(18), pages 3836-3846, December.
- Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
- Forouzanfar, Mehdi & Doustmohammadi, A. & Hasanzadeh, Samira & Shakouri G, H., 2012. "Transport energy demand forecast using multi-level genetic programming," Applied Energy, Elsevier, vol. 91(1), pages 496-503.
- Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
- Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
- Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
- Kavaklioglu, Kadir, 2011. "Modeling and prediction of Turkey's electricity consumption using Support Vector Regression," Applied Energy, Elsevier, vol. 88(1), pages 368-375, January.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
- Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
- Canyurt, Olcay Ersel & Ozturk, Harun Kemal, 2008. "Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2562-2569, July.
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
- Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
- Haldenbilen, Soner & Ceylan, Halim, 2005. "Genetic algorithm approach to estimate transport energy demand in Turkey," Energy Policy, Elsevier, vol. 33(1), pages 89-98, January.
- Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
- Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2008. "Grey relation analysis of motor vehicular energy consumption in Taiwan," Energy Policy, Elsevier, vol. 36(7), pages 2556-2561, July.
- Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
- Erdogdu, Erkan, 2007.
"Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey,"
Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
- Erdogdu, Erkan, 2007. "Electricity Demand Analysis Using Cointegration and ARIMA Modelling: A case study of Turkey," MPRA Paper 19099, University Library of Munich, Germany.
- Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
- Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
- Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
- Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
- Günay, M. Erdem, 2016. "Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey," Energy Policy, Elsevier, vol. 90(C), pages 92-101.
- Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
- Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
- Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
- Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
- Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
- Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
- Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
- He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
- Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
- Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
- Erdogdu, Erkan, 2010.
"Natural gas demand in Turkey,"
Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
- Erdogdu, Erkan, 2009. "Natural gas demand in Turkey," MPRA Paper 19091, University Library of Munich, Germany.
- Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017.
"A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Manuel Llorca & Jose Banos & Somoza Jose & Pelayo Arbues, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, , vol. 38(5), pages 153-174, September.
More about this item
Keywords
Fuzzy Grey Prediction; Sectorial Energy Demand in Turkey; Fuzzy Grey Regression Model;All these keywords.
JEL classification:
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- L69 - Industrial Organization - - Industry Studies: Manufacturing - - - Other
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2017-01-08. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.