IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223018121.html
   My bibliography  Save this article

Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations

Author

Listed:
  • Yan, Bowen
  • Shen, Ruifang
  • Li, Ke
  • Wang, Zhenguo
  • Yang, Qingshan
  • Zhou, Xuhong
  • Zhang, Le

Abstract

Wind, as a fluid, has continuity in both space and time. Coupling spatial and temporal information to build prediction models can improve wind speed prediction accuracy. This paper proposes a method that predicts wind speed at multiple locations using both spatial and temporal data. Three deep learning models are introduced: Convolutional Residual Spatial-Temporal Long Short-Term Memory neural network (CoReSTL), Convolutional Spatial-Temporal-3D neural network (CoST-3), and Convolutional Spatial-Temporal Long Short-Term Memory neural network (CoST-L). These models combine Convolutional Long Short-Term Memory (ConvLSTM), Residual Network (ResNet), and 1 × 1 3D convolution to extract spatial and temporal correlations between multi-site wind speeds. The spatio-temporal prediction of wind fields under two terrains was carried out to screen out neural network models with higher accuracy. The results show that CoReSTL, CoST-3, and CoST-L all achieved better prediction results. However, the performance of the CoReSTL model was better than that of CoST-3 and CoST-L, with stronger applicability in complex real terrain.

Suggested Citation

  • Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018121
    DOI: 10.1016/j.energy.2023.128418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Li, Wenzhe & Hsu, Yuan-Ming & Lee, Jay, 2020. "Gaussian Process Regression for numerical wind speed prediction enhancement," Renewable Energy, Elsevier, vol. 146(C), pages 2112-2123.
    2. Tang, Xiao-Yu & Zhao, Shumian & Fan, Bo & Peinke, Joachim & Stoevesandt, Bernhard, 2019. "Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts," Applied Energy, Elsevier, vol. 238(C), pages 806-815.
    3. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    4. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    5. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.
    6. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    7. Dhunny, A.Z. & Lollchund, M.R. & Rughooputh, S.D.D.V., 2017. "Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD)," Renewable Energy, Elsevier, vol. 101(C), pages 1-9.
    8. Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    9. Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
    10. Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
    11. Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Guo, Kunpeng & Zhou, Tong & Liu, Min & Zhang, Jian & Yuan, Ziting, 2022. "A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm," Energy, Elsevier, vol. 251(C).
    12. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
    13. Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.
    14. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    15. Hoolohan, Victoria & Tomlin, Alison S. & Cockerill, Timothy, 2018. "Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data," Renewable Energy, Elsevier, vol. 126(C), pages 1043-1054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    2. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    3. Parri, Srihari & Teeparthi, Kiran & Kosana, Vishalteja, 2024. "A hybrid methodology using VMD and disentangled features for wind speed forecasting," Energy, Elsevier, vol. 288(C).
    4. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    5. Li, Yang & Shen, Xiaojun & Zhou, Chongcheng, 2023. "Dynamic multi-turbines spatiotemporal correlation model enabled digital twin technology for real-time wind speed prediction," Renewable Energy, Elsevier, vol. 203(C), pages 841-853.
    6. Chen, Wenhe & Zhou, Hanting & Cheng, Longsheng & Xia, Min, 2023. "Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention," Energy, Elsevier, vol. 278(PB).
    7. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    8. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    9. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    10. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    11. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    12. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    13. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
    14. Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
    15. Takanori Uchida & Kenichiro Sugitani, 2020. "Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain," Energies, MDPI, vol. 13(15), pages 1-38, July.
    16. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    17. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    18. Parri, Srihari & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "A hybrid VMD based contextual feature representation approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    19. Xiong, Xiong & Zou, Ruilin & Sheng, Tao & Zeng, Weilin & Ye, Xiaoling, 2023. "An ultra-short-term wind speed correction method based on the fluctuation characteristics of wind speed," Energy, Elsevier, vol. 283(C).
    20. Baïle, Rachel & Muzy, Jean-François, 2023. "Leveraging data from nearby stations to improve short-term wind speed forecasts," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.