IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i4p277-292.html
   My bibliography  Save this article

Forecasting in long horizons using smoothed direct forecast

Author

Listed:
  • Yaein Baek

Abstract

This paper constructs a forecast method that obtains long‐horizon forecasts with improved performance through modification of the direct forecast approach. Direct forecasts are more robust to model misspecification compared to iterated forecasts, which makes them preferable in long horizons. However, direct forecast estimates tend to have jagged shapes across horizons. Our forecast method aims to “smooth out” erratic estimates across horizons while maintaining the robust aspect of direct forecasts through ridge regression, which is a restricted regression on the first differences of regression coefficients. The forecasts are compared to the conventional iterated and direct forecasts in two empirical applications: real oil prices and US macroeconomic series. In both applications, our method shows improvement over direct forecasts.

Suggested Citation

  • Yaein Baek, 2019. "Forecasting in long horizons using smoothed direct forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 277-292, July.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:4:p:277-292
    DOI: 10.1002/for.2572
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2572
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:4:p:277-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.