The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Jiaxing Pang & Xue Li & Xiang Li & Ting Yang & Ya Li & Xingpeng Chen, 2022. "Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural Water in China," Agriculture, MDPI, vol. 12(4), pages 1-20, April.
- Li-Wei Liu & Chun-Tang Lu & Yu-Min Wang & Kuan-Hui Lin & Xingmao Ma & Wen-Shin Lin, 2022. "Rice ( Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms," Agriculture, MDPI, vol. 12(1), pages 1-11, January.
- Yeong Hyeon Gu & Dong Jin & Helin Yin & Ri Zheng & Xianghua Piao & Seong Joon Yoo, 2022. "Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Chih-Chung Yang & Yungho Leu & Chien-Pang Lee, 2014. "A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 115-129, June.
- Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
- Zhun Cheng & Zhixiong Lu, 2022. "Regression-Based Correction and I-PSO-Based Optimization of HMCVT’s Speed Regulating Characteristics for Agricultural Machinery," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
- Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
- Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Wu, Chunying & Wang, Jianzhou & Chen, Xuejun & Du, Pei & Yang, Wendong, 2020. "A novel hybrid system based on multi-objective optimization for wind speed forecasting," Renewable Energy, Elsevier, vol. 146(C), pages 149-165.
- B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2019. "Predicting Indian stock market using the psycho-linguistic features of financial news," Papers 1911.06193, arXiv.org.
- Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
- Morais, Lucas Barros Scianni & Aquila, Giancarlo & de Faria, Victor Augusto Durães & Lima, Luana Medeiros Marangon & Lima, José Wanderley Marangon & de Queiroz, Anderson Rodrigo, 2023. "Short-term load forecasting using neural networks and global climate models: An application to a large-scale electrical power system," Applied Energy, Elsevier, vol. 348(C).
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
- Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
- Maya Malinda & Jo-Hui Chen, 2022. "The forecasting of consumer exchange-traded funds (ETFs) via grey relational analysis (GRA) and artificial neural network (ANN)," Empirical Economics, Springer, vol. 62(2), pages 779-823, February.
- B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2021. "Predicting Indian Stock Market Using the Psycho-Linguistic Features of Financial News," Annals of Data Science, Springer, vol. 8(3), pages 517-558, September.
- Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017.
"Autocorrelation in an unobservable global trend: does it help to forecast market returns?,"
International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
- Peresetsky, Anatoly & Yakubov, Ruslan, 2015. "Autocorrelation in an unobservable global trend: Does it help to forecast market returns?," MPRA Paper 64579, University Library of Munich, Germany.
- Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Antonio Rubia & Trino-Manuel Ñíguez, 2006.
"Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
- Antonio Rubia Serrano & Trino-Manuel Ñíguez, 2003. "Forecasting The Conditional Covariance Matrix Of A Portfolio Under Long-Run Temporal Dependence," Working Papers. Serie AD 2003-34, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011.
"Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
- George Athanasopoulos & Osmani T. de C. Guillén & João V. Issler & Farshid Vahid, 2009. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Monash Econometrics and Business Statistics Working Papers 2/09, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Guillen, Osmani Teixeira Carvalho & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 713, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- George Athanasopoulos & Osmani Teixeira de Carvalho Guillén & João Victor Issler & Farshid Vahid, 2010. "Model selection, Estimation and Forecasting in VAR Models with Short-run and Long-run Restrictions," Working Papers Series 205, Central Bank of Brazil, Research Department.
- Athanasopoulos, George & Guillen, Osmani Teixeira Carvalho & Issler, João Victor & Vahid, Farshid, 2010. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 707, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Athanasopoulos, George & Guillen, Osmani Teixeira Carvalho & Issler, João Victor, 2009. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 688, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Athanasopoulos, George & Guillen, Osmani Teixeira Carvalho & Issler, João Victor & Vahid, Farshid, 2010. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 704, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012.
"Are Some Forecasters Really Better Than Others?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
- Antonello D’agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
- Antonello D’Agostino & Kieran McQuinn & Karl Whelan, 2010. "Are Some Forecasters Really Better Than Others?," Working Papers 201012, School of Economics, University College Dublin.
- D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2010. "Are Some Forecasters Really Better Than Others?," Research Technical Papers 5/RT/10, Central Bank of Ireland.
- D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2011. "Are some forecasters really better than others?," MPRA Paper 32938, University Library of Munich, Germany.
- Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009.
"Nuisance parameters, composite likelihoods and a panel of GARCH models,"
Economics Papers
2009-W12, Economics Group, Nuffield College, University of Oxford.
- Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Series Working Papers 458, University of Oxford, Department of Economics.
- Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
More about this item
Keywords
agricultural output; marriage in honey bees optimization; support vector regression; long-term; prediction model; robust;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1075-:d:869234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.