IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1075-d869234.html
   My bibliography  Save this article

The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model

Author

Listed:
  • Chin-Hung Kuan

    (Department of Information Management, National Taiwan University of Science and Technology, Taipei City 106, Taiwan)

  • Yungho Leu

    (Department of Information Management, National Taiwan University of Science and Technology, Taipei City 106, Taiwan)

  • Wen-Shin Lin

    (Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung 912, Taiwan)

  • Chien-Pang Lee

    (Department of Maritime Information and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 805, Taiwan)

Abstract

Recently, annual agricultural data have been highly volatile as a result of climate change and national economic trends. Therefore, such data might not be enough to develop good agricultural policies for stabilizing agricultural output. A good agricultural output prediction model to assist agricultural policymaking has thus become essential. However, the highly volatile data would affect the prediction model’s performance. For this reason, this study proposes a marriage in honey bees optimization/support vector regression (MBO/SVR) model to minimize the effects of highly volatile data (outliers) and enhance prediction accuracy. We verified the performance of the MBO/SVR model by using the annual total agricultural output collected from the official Agricultural Statistics Yearbook of the Council of Agriculture, Taiwan. Taiwan’s annual total agricultural output integrates agricultural, livestock and poultry, fishery, and forest products. The results indicated that the MBO/SVR model had a lower mean absolute percentage error (MAPE), root mean square percentage error (RMSPE), and relative root mean squared error ( r -RMSE) than those of the models it was compared to. Furthermore, the MBO/SVR model predicted long-term agricultural output more accurately and achieved higher directional symmetry (DS) than the other models. Accordingly, the MBO/SVR model is a robust, high-prediction-accuracy model for predicting long-term agricultural output to assist agricultural policymaking.

Suggested Citation

  • Chin-Hung Kuan & Yungho Leu & Wen-Shin Lin & Chien-Pang Lee, 2022. "The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1075-:d:869234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeynep Ceylan, 2020. "Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 944-956, September.
    2. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    3. Jiaxing Pang & Xue Li & Xiang Li & Ting Yang & Ya Li & Xingpeng Chen, 2022. "Analysis of Regional Differences and Factors Influencing the Intensity of Agricultural Water in China," Agriculture, MDPI, vol. 12(4), pages 1-20, April.
    4. Li-Wei Liu & Chun-Tang Lu & Yu-Min Wang & Kuan-Hui Lin & Xingmao Ma & Wen-Shin Lin, 2022. "Rice ( Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms," Agriculture, MDPI, vol. 12(1), pages 1-11, January.
    5. Yeong Hyeon Gu & Dong Jin & Helin Yin & Ri Zheng & Xianghua Piao & Seong Joon Yoo, 2022. "Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Chih-Chung Yang & Yungho Leu & Chien-Pang Lee, 2014. "A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 115-129, June.
    8. Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
    9. Zhun Cheng & Zhixiong Lu, 2022. "Regression-Based Correction and I-PSO-Based Optimization of HMCVT’s Speed Regulating Characteristics for Agricultural Machinery," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    2. Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    3. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    4. Wu, Chunying & Wang, Jianzhou & Chen, Xuejun & Du, Pei & Yang, Wendong, 2020. "A novel hybrid system based on multi-objective optimization for wind speed forecasting," Renewable Energy, Elsevier, vol. 146(C), pages 149-165.
    5. B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2019. "Predicting Indian stock market using the psycho-linguistic features of financial news," Papers 1911.06193, arXiv.org.
    6. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    7. Morais, Lucas Barros Scianni & Aquila, Giancarlo & de Faria, Victor Augusto Durães & Lima, Luana Medeiros Marangon & Lima, José Wanderley Marangon & de Queiroz, Anderson Rodrigo, 2023. "Short-term load forecasting using neural networks and global climate models: An application to a large-scale electrical power system," Applied Energy, Elsevier, vol. 348(C).
    8. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
    9. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
    10. Maya Malinda & Jo-Hui Chen, 2022. "The forecasting of consumer exchange-traded funds (ETFs) via grey relational analysis (GRA) and artificial neural network (ANN)," Empirical Economics, Springer, vol. 62(2), pages 779-823, February.
    11. B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2021. "Predicting Indian Stock Market Using the Psycho-Linguistic Features of Financial News," Annals of Data Science, Springer, vol. 8(3), pages 517-558, September.
    12. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    13. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    14. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    15. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    16. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    17. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    18. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
    19. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    20. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1075-:d:869234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.