IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v32y2023i9p2113-2126.html
   My bibliography  Save this article

How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery

Author

Listed:
  • Silvia Moler‐Zapata
  • Richard Grieve
  • Anirban Basu
  • Stephen O’Neill

Abstract

Local instrumental variable (LIV) approaches use continuous/multi‐valued instrumental variables (IV) to generate consistent estimates of average treatment effects (ATEs) and Conditional Average Treatment Effects (CATEs). There is little evidence on how LIV approaches perform according to the strength of the IV or with different sample sizes. Our simulation study examined the performance of an LIV method, and a two‐stage least squares (2SLS) approach across different sample sizes and IV strengths. We considered four ‘heterogeneity’ scenarios: homogeneity, overt heterogeneity (over measured covariates), essential heterogeneity (unmeasured), and overt and essential heterogeneity combined. In all scenarios, LIV reported estimates with low bias even with the smallest sample size, provided that the instrument was strong. Compared to 2SLS, LIV provided estimates for ATE and CATE with lower levels of bias and Root Mean Squared Error. With smaller sample sizes, both approaches required stronger IVs to ensure low bias. We considered both methods in evaluating emergency surgery (ES) for three acute gastrointestinal conditions. Whereas 2SLS found no differences in the effectiveness of ES according to subgroup, LIV reported that frailer patients had worse outcomes following ES. In settings with continuous IVs of moderate strength, LIV approaches are better suited than 2SLS to estimate policy‐relevant treatment effect parameters.

Suggested Citation

  • Silvia Moler‐Zapata & Richard Grieve & Anirban Basu & Stephen O’Neill, 2023. "How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2113-2126, September.
  • Handle: RePEc:wly:hlthec:v:32:y:2023:i:9:p:2113-2126
    DOI: 10.1002/hec.4719
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.4719
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.4719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    2. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    3. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Björklund, Anders, 1983. "Estimation of Wage Gains and Welfare Gains from Self-Selection Models," Working Paper Series 105, Research Institute of Industrial Economics.
    6. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    7. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    8. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    9. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    10. Anirban Basu, 2015. "Person-centered treatment (PeT) effects: Individualized treatment effects using instrumental variables," Stata Journal, StataCorp LP, vol. 15(2), pages 397-410, June.
    11. Anirban Basu & Norma B. Coe & Cole G. Chapman, 2018. "2SLS versus 2SRI: Appropriate methods for rare outcomes and/or rare exposures," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 937-955, June.
    12. Basu, Anirban & Jones, Andrew M. & Dias, Pedro Rosa, 2018. "Heterogeneity in the impact of type of schooling on adult health and lifestyle," Journal of Health Economics, Elsevier, vol. 57(C), pages 1-14.
    13. Anirban Basu, 2014. "ESTIMATING PERSON‐CENTERED TREATMENT (PeT) EFFECTS USING INSTRUMENTAL VARIABLES: AN APPLICATION TO EVALUATING PROSTATE CANCER TREATMENTS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 671-691, June.
    14. Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
    15. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    16. Roderick J. Little & Qi Long & Xihong Lin, 2009. "A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance," Biometrics, The International Biometric Society, vol. 65(2), pages 640-649, June.
    17. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    18. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    19. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    20. Daryl Pregibon, 1980. "Goodness of Link Tests for Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 15-24, March.
    21. Joshua D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    22. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moler-Zapata, S.; & Grieve, R.; & Basu, A.; & O'Neill, S.;, 2022. "How does a local Instrumental Variable Method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health, Econometrics and Data Group (HEDG) Working Papers 22/18, HEDG, c/o Department of Economics, University of York.
    2. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    3. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    4. Sho Miyaji, 2024. "Instrumented Difference-in-Differences with Heterogeneous Treatment Effects," Papers 2405.12083, arXiv.org, revised Jul 2024.
    5. Tafti, Elena Ashtari, 2023. "Technology, Skills, and Performance: The Case of Robots in Surgery," CINCH Working Paper Series (since 2020) 78746, Duisburg-Essen University Library, DuEPublico.
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Akabayashi, Hideo & Ruberg, Tim & Shikishima, Chizuru & Yamashita, Jun, 2023. "Education-oriented and care-oriented preschools: Implications on child development," Labour Economics, Elsevier, vol. 84(C).
    8. Antill, Samuel, 2022. "Do the right firms survive bankruptcy?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 523-546.
    9. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    10. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    11. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    12. Gelo, Dambala & Muchapondwa, Edwin & Koch, Steven F., 2016. "Decentralization, market integration and efficiency-equity trade-offs: Evidence from Joint Forest Management in Ethiopian villages," Journal of Forest Economics, Elsevier, vol. 22(C), pages 1-23.
    13. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    14. Yu‐Chang Chen & Haitian Xie, 2022. "Global Representation of the Conditional LATE Model: A Separability Result," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 789-798, August.
    15. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    16. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    17. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    18. Yu-Chang Chen & Haitian Xie, 2020. "Global Representation of the Conditional LATE Model: A Separability Result," Papers 2007.08106, arXiv.org, revised Mar 2022.
    19. Elena Ashtari Tafti, 2022. "Technology, skills, and performance: the case of robots in surgery," IFS Working Papers W22/46, Institute for Fiscal Studies.
    20. Yinchu Zhu, 2021. "Phase transition of the monotonicity assumption in learning local average treatment effects," Papers 2103.13369, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:32:y:2023:i:9:p:2113-2126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.