IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i5p898-906.html
   My bibliography  Save this article

Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase

Author

Listed:
  • Dea Hyun Moon
  • Jun Eu
  • Wonhee Lee
  • Young Eun Kim
  • Ki Tae Park
  • You Na Ko
  • Soon Kwan Jeong
  • Min Hye Youn

Abstract

In this study, we investigated the effect of calcium sources with different solubilities and the carbonic anhydrase (CA) enzyme on carbonate mineralization reaction, and analyzed the reaction rate, the morphology of the formed precipitate, and the surface. The CO2 mineralization rate was affected by the rate of CO2 hydration and the rate of Ca ionization. For all of the calcium sources tested, CA improved the overall carbonate mineralization rate, but depending on the solubility of each calcium source, the reaction rates were in the order of CaCl2 > Ca(OH)2 > CaO. From CaCl2, calcium carbonate was generated rapidly. This was due to the high concentration of calcium ions in the solution because it was easily dissolved. But because of its high surface energy, calcite and vaterite coexisted. On the other hand, Ca(OH)2 and CaO had relatively low solubility and the rate of calcium carbonate production was slow, but after the reaction, CaCO3 with a calcite structure was formed. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Dea Hyun Moon & Jun Eu & Wonhee Lee & Young Eun Kim & Ki Tae Park & You Na Ko & Soon Kwan Jeong & Min Hye Youn, 2020. "Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 898-906, October.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:898-906
    DOI: 10.1002/ghg.2007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2007
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    2. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
    3. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    4. Hendy Thee & Kathryn H. Smith & Gabriel da Silva & Sandra E. Kentish & Geoffrey W. Stevens, 2015. "Carbonic anhydrase promoted absorption of CO 2 into potassium carbonate solutions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(1), pages 108-114, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    2. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Tu, Te & Yang, Xing & Cui, Qiufang & Shang, Yu & Yan, Shuiping, 2022. "CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser," Applied Energy, Elsevier, vol. 323(C).
    5. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    6. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    7. Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
    8. Foster Kofi Ayittey & Agus Saptoro & Perumal Kumar & Mee Kee Wong, 2020. "Parametric study and optimisation of hot K2CO3‐based post‐combustion CO2 capture from a coal‐fired power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 631-642, June.
    9. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    10. Ioannis Rigopoulos & Michalis A. Vasiliades & Klito C. Petallidou & Ioannis Ioannou & Angelos M. Efstathiou & Theodora Kyratsi, 2015. "A method to enhance the CO 2 storage capacity of pyroxenitic rocks," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 577-591, October.
    11. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    12. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    13. Plaza, M.G. & Rubiera, F., 2019. "Evaluation of a novel multibed heat-integrated vacuum and temperature swing adsorption post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 250(C), pages 916-925.
    14. Cui, Qiufang & Tu, Te & Ji, Long & Yan, Shuiping, 2021. "CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes," Energy, Elsevier, vol. 216(C).
    15. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    16. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    17. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    18. Hornbostel, K. & Nguyen, D. & Bourcier, W. & Knipe, J. & Worthington, M. & McCoy, S. & Stolaroff, J., 2019. "Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution," Applied Energy, Elsevier, vol. 235(C), pages 1192-1204.
    19. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    20. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:898-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.