Parametric study and optimisation of hot K2CO3‐based post‐combustion CO2 capture from a coal‐fired power plant
Author
Abstract
Suggested Citation
DOI: 10.1002/ghg.1983
Download full text from publisher
References listed on IDEAS
- Zhao, Wenying & Sprachmann, Gerald & Li, Zhenshan & Cai, Ningsheng & Zhang, Xiaohui, 2013. "Effect of K2CO3·1.5H2O on the regeneration energy consumption of potassium-based sorbents for CO2 capture," Applied Energy, Elsevier, vol. 112(C), pages 381-387.
- Foster Kofi Ayittey & Christine Ann Obek & Agus Saptoro & Kumar Perumal & Mee Kee Wong, 2020. "Process modifications for a hot potassium carbonate‐based CO2 capture system: a comparative study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(1), pages 130-146, February.
- Hendy Thee & Kathryn H. Smith & Gabriel da Silva & Sandra E. Kentish & Geoffrey W. Stevens, 2015. "Carbonic anhydrase promoted absorption of CO 2 into potassium carbonate solutions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(1), pages 108-114, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chuenphan, Thapanat & Yurata, Tarabordin & Sema, Teerawat & Chalermsinsuwan, Benjapon, 2022. "Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution," Energy, Elsevier, vol. 254(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shunji Kang & Zhi Shen & Xizhou Shen & Liuya Fang & Li Xiang & Wenze Yang, 2021. "Experimental investigation on CO2 desorption kinetics from MDEA + PZ and comparison with MDEA/MDEA + DEA aqueous solutions with thermo‐gravimetric analysis method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 974-987, October.
- Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
- Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
- Dea Hyun Moon & Jun Eu & Wonhee Lee & Young Eun Kim & Ki Tae Park & You Na Ko & Soon Kwan Jeong & Min Hye Youn, 2020. "Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 898-906, October.
- Qin, Changlei & Yin, Junjun & Ran, Jingyu & Zhang, Li & Feng, Bo, 2014. "Effect of support material on the performance of K2CO3-based pellets for cyclic CO2 capture," Applied Energy, Elsevier, vol. 136(C), pages 280-288.
- Thummakul, Theeranan & Gidaspow, Dimitri & Piumsomboon, Pornpote & Chalermsinsuwan, Benjapon, 2017. "CFD simulation of CO2 sorption on K2CO3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study," Applied Energy, Elsevier, vol. 190(C), pages 122-134.
- Qi, Guojie & Liu, Kun & House, Alan & Salmon, Sonja & Ambedkar, Balraj & Frimpong, Reynolds A. & Remias, Joseph E. & Liu, Kunlei, 2018. "Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping," Applied Energy, Elsevier, vol. 209(C), pages 180-189.
- Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
- Jayakumar, Abhimanyu & Gomez, Arturo & Mahinpey, Nader, 2016. "Post-combustion CO2 capture using solid K2CO3: Discovering the carbonation reaction mechanism," Applied Energy, Elsevier, vol. 179(C), pages 531-543.
- Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
- Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
- Kumar, Tharun Roshan & Beiron, Johanna & Biermann, Maximilian & Harvey, Simon & Thunman, Henrik, 2023. "Plant and system-level performance of combined heat and power plants equipped with different carbon capture technologies," Applied Energy, Elsevier, vol. 338(C).
- Sanna, Aimaro & Ramli, Ili & Mercedes Maroto-Valer, M., 2015. "Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture," Applied Energy, Elsevier, vol. 156(C), pages 197-206.
- Chuenphan, Thapanat & Yurata, Tarabordin & Sema, Teerawat & Chalermsinsuwan, Benjapon, 2022. "Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution," Energy, Elsevier, vol. 254(PA).
- Susmita Datta Peu & Arnob Das & Md. Sanowar Hossain & Md. Abdul Mannan Akanda & Md. Muzaffer Hosen Akanda & Mahbubur Rahman & Md. Naim Miah & Barun K. Das & Abu Reza Md. Towfiqul Islam & Mostafa M. Sa, 2023. "A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment," Sustainability, MDPI, vol. 15(7), pages 1-33, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:3:p:631-642. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.