IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v65y2013i3p452-468.html
   My bibliography  Save this article

The value of adaption: Climate change and timberland management

Author

Listed:
  • Guo, Christopher
  • Costello, Christopher

Abstract

Adaptation to exogenous change occurs on both intensive and extensive margins. Whether and how one accounts for human adaptation directly affects estimates of the economic consequences of environmental change, estimates that are both critical in informing policy decisions and notoriously difficult to value. This paper introduces and applies an analytical framework for placing an economic value on adaptation. We explore the issue first in a stylized model that facilitates making concrete generalizations about the kinds of adaptations that generate high or low economic value. We then test the soundness of our insights by incorporating learning and adaptive decision-making into a structural dynamic forestry model where climate change is imposed exogenously and agents respond optimally. Using downscaled climate projections integrated with site- and species-specific timber productivity data, we estimate the economic value of adaptation to climate change within the California timber industry. We find on the intensive margin, changing the rotation intervals will yield a low value of adaptation, but on the extensive margin, replanting more suitable tree species can yield significant value.

Suggested Citation

  • Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
  • Handle: RePEc:eee:jeeman:v:65:y:2013:i:3:p:452-468
    DOI: 10.1016/j.jeem.2012.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069612001180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2012.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sedjo, Roger A., 2010. "Adaptation of Forests to Climate Change: Some Estimates," RFF Working Paper Series dp-10-06, Resources for the Future.
    2. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    3. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    4. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    5. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    6. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Establishment Size Dynamics in the Aggregate Economy," American Economic Review, American Economic Association, vol. 97(5), pages 1639-1666, December.
    7. Morck, Randall & Schwartz, Eduardo & Stangeland, David, 1989. "The Valuation of Forestry Resources under Stochastic Prices and Inventories," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(4), pages 473-487, December.
    8. Besley, Timothy & Case, Anne, 1993. "Modeling Technology Adoption in Developing Countries," American Economic Review, American Economic Association, vol. 83(2), pages 396-402, May.
    9. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    10. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    11. Sohngen, Brent & Mendelsohn, Robert, 1998. "Valuing the Impact of Large-Scale Ecological Change in a Market: The Effect of Climate Change on U.S. Timber," American Economic Review, American Economic Association, vol. 88(4), pages 686-710, September.
    12. Laurence Reeves & Robert Haight, 2000. "Timber harvest scheduling with price uncertainty using Markowitz portfolio optimization," Annals of Operations Research, Springer, vol. 95(1), pages 229-250, January.
    13. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    14. Sah, Raaj & Zhao, Jingang, 1998. "Some Envelope Theorems for Integer and Discrete Choice Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 623-634, August.
    15. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    16. Loewenstein, George & Ubel, Peter A., 2008. "Hedonic adaptation and the role of decision and experience utility in public policy," Journal of Public Economics, Elsevier, vol. 92(8-9), pages 1795-1810, August.
    17. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    18. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    19. Thomas A. Thomson, 1992. "Optimal Forest Rotation When Stumpage Prices Follow a Diffusion Process," Land Economics, University of Wisconsin Press, vol. 68(3), pages 329-342.
    20. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    21. Ellen Hanak & Georgina Moreno, 2012. "California coastal management with a changing climate," Climatic Change, Springer, vol. 111(1), pages 45-73, March.
    22. Barry Smit & Ian Burton & Richard Klein & J. Wandel, 2000. "An Anatomy of Adaptation to Climate Change and Variability," Climatic Change, Springer, vol. 45(1), pages 223-251, April.
    23. Reed, William J & Clarke, Harry R, 1990. "Harvest Decisions and Asset Valuation for Biological Resources Exhibiting Size-Dependent Stochastic Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(1), pages 147-169, February.
    24. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    25. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    26. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    2. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    3. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    4. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    5. Chang, Sun Joseph & Zhang, Fan, 2023. "Active timber management by outsourcing stumpage price uncertainty with the American put option," Forest Policy and Economics, Elsevier, vol. 154(C).
    6. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    7. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    8. Pedro Cosme da Costa Vieira, 2008. "Integrating fire risk into the management of forests," FEP Working Papers 290, Universidade do Porto, Faculdade de Economia do Porto.
    9. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    10. Alvarez, Luis H. R. & Koskela, Erkki, 2005. "Wicksellian theory of forest rotation under interest rate variability," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 529-545, March.
    11. Bogmans, Christian W.J. & Dijkema, Gerard P.J. & van Vliet, Michelle T.H., 2017. "Adaptation of thermal power plants: The (ir)relevance of climate (change) information," Energy Economics, Elsevier, vol. 62(C), pages 1-18.
    12. Manley, Bruce & Niquidet, Kurt, 2010. "What is the relevance of option pricing for forest valuation in New Zealand?," Forest Policy and Economics, Elsevier, vol. 12(4), pages 299-307, April.
    13. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    14. Manley, Bruce & Niquidet, Kurt, 2017. "How does real option value compare with Faustmann value when log prices follow fractional Brownian motion?," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 76-84.
    15. S. Seo & Robert Mendelsohn & Ariel Dinar & Rashid Hassan & Pradeep Kurukulasuriya, 2009. "A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 313-332, July.
    16. Buongiorno, Joseph & Zhou, Mo, 2011. "Further generalization of Faustmann's formula for stochastic interest rates," Journal of Forest Economics, Elsevier, vol. 17(3), pages 248-257, August.
    17. Simone Kelly, 2017. "The market premium for the option to close: evidence from Australian gold mining firms," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(2), pages 511-531, June.
    18. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 131066, International Association of Agricultural Economists.
    19. Ben Abdallah, Skander & Lasserre, Pierre, 2017. "Forest land value and rotation with an alternative land use," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 118-127.
    20. S. Niggol Seo, 2016. "The Micro-behavioral Framework for Estimating Total Damage of Global Warming on Natural Resource Enterprises with Full Adaptations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 328-347, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:65:y:2013:i:3:p:452-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.