IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v4y2016i1p13n3.html
   My bibliography  Save this article

A Biconvex Form for Copulas

Author

Listed:
  • Fuchs Sebastian

    (Lehrstuhl für Versicherungsmathematik, Technische Universität Dresden)

Abstract

We study the integration of a copula with respect to the probability measure generated by another copula. To this end, we consider the map [. , .] : C × C → R given bywhere C denotes the collection of all d–dimensional copulas and QD denotes the probability measures associated with the copula D. Specifically, this is of interest since several measures of concordance such as Kendall’s tau, Spearman’s rho and Gini’s gamma can be expressed in terms of the map [. , .]. Quite generally, the map [. , .] can be applied to construct and investigate measures of concordance.

Suggested Citation

  • Fuchs Sebastian, 2016. "A Biconvex Form for Copulas," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, February.
  • Handle: RePEc:vrs:demode:v:4:y:2016:i:1:p:13:n:3
    DOI: 10.1515/demo-2016-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2016-0003
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2016-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    2. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    3. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    2. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    3. Naoyuki Ishimura & Naohiro Yoshida, 2017. "On a measure of dependence for extreme value copulas," EcoMod2017 10311, EcoMod.
    4. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    5. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    6. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    7. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    8. Silvia Terzi & Luca Moroni, 2022. "Local Concordance and Some Applications," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 457-470, June.
    9. Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    10. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    11. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    12. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    13. Liebscher Eckhard, 2017. "Copula-Based Dependence Measures For Piecewise Monotonicity," Dependence Modeling, De Gruyter, vol. 5(1), pages 198-220, August.
    14. Vanderford Courtney & Sang Yongli & Dang Xin, 2020. "Two symmetric and computationally efficient Gini correlations," Dependence Modeling, De Gruyter, vol. 8(1), pages 373-395, January.
    15. Machová Renáta & Korcsmáros Enikő & Marča Roland & Esseová Monika, 2022. "An International Analysis of Consumers’ Consciousness During the Covid-19 Pandemic in Slovakia and Hungary," Folia Oeconomica Stetinensia, Sciendo, vol. 22(1), pages 130-151, June.
    16. Neslehová, Johanna, 2007. "On rank correlation measures for non-continuous random variables," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 544-567, March.
    17. Ying Zhang & Chuancun Yin, 2014. "A new multivariate dependence measure based on comonotonicity," Papers 1410.7845, arXiv.org.
    18. Sergio Ortobelli & Tomáš Tichý, 2015. "On the impact of semidefinite positive correlation measures in portfolio theory," Annals of Operations Research, Springer, vol. 235(1), pages 625-652, December.
    19. Antonio Dalessandro & Gareth W. Peters, 2018. "Tensor Approximation of Generalized Correlated Diffusions and Functional Copula Operators," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 237-271, March.
    20. Claudio G. Borroni, 2019. "Mutual association measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 571-591, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:4:y:2016:i:1:p:13:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.