IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i4d10.1007_s11634-019-00360-z.html
   My bibliography  Save this article

A Kendall correlation coefficient between functional data

Author

Listed:
  • Dalia Valencia

    (Universidad Carlos III de Madrid)

  • Rosa E. Lillo

    (Universidad Carlos III de Madrid)

  • Juan Romo

    (Universidad Carlos III de Madrid)

Abstract

Measuring dependence is a very important tool to analyze pairs of functional data. The coefficients currently available to quantify association between two sets of curves show a non robust behavior under the presence of outliers. We propose a new robust numerical measure of association for bivariate functional data. We extend in this paper Kendall coefficient for finite dimensional observations to the functional setting. We also study its statistical properties. An extensive simulation study shows the good behavior of this new measure for different types of functional data. Moreover, we apply it to establish association for real data, including microarrays time series in genetics.

Suggested Citation

  • Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00360-z
    DOI: 10.1007/s11634-019-00360-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-019-00360-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-019-00360-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    4. Dubin, Joel A. & Muller, Hans-Georg, 2005. "Dynamical Correlation for Multivariate Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 872-881, September.
    5. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    6. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    7. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    8. Pedro Delicado, 2007. "Functional k-sample problem when data are density functions," Computational Statistics, Springer, vol. 22(3), pages 391-410, September.
    9. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    10. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fortuna, Francesca & Naccarato, Alessia & Salvati, Luca, 2024. "The functional distance-based approach: An application on long-term Metropolitan Development," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Beatriz Sinova & Stefan Van Aelst & Pedro Terán, 2021. "M-estimators and trimmed means: from Hilbert-valued to fuzzy set-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 267-288, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws133228 is not listed on IDEAS
    2. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    3. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    4. Silvia Terzi & Luca Moroni, 2022. "Local Concordance and Some Applications," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 457-470, June.
    5. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    6. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    7. Fuchs Sebastian, 2016. "A Biconvex Form for Copulas," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, February.
    8. Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    9. Naoyuki Ishimura & Naohiro Yoshida, 2017. "On a measure of dependence for extreme value copulas," EcoMod2017 10311, EcoMod.
    10. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    11. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    12. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    13. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    14. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    15. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    16. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    17. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    18. Liebscher Eckhard, 2017. "Copula-Based Dependence Measures For Piecewise Monotonicity," Dependence Modeling, De Gruyter, vol. 5(1), pages 198-220, August.
    19. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    20. Sergio Ocampo, 2019. "A task-based theory of occupations with multidimensional heterogeneity," 2019 Meeting Papers 477, Society for Economic Dynamics.
    21. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    22. Liebscher, Eckhard, 2021. "Kendall regression coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00360-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.