IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.11968.html
   My bibliography  Save this paper

An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model

Author

Listed:
  • Edoardo Berton
  • Lorenzo Mercuri

Abstract

In this study, we propose a new formula for spread option pricing with the dependence of two assets described by a copula function. The advantage of the proposed method is that it requires only the numerical evaluation of a one-dimensional integral. Any univariate stock price process, admitting an affine characteristic function, can be used in our formula to get an efficient numerical procedure for computing spread option prices. In the numerical analysis we present a comparison with Monte Carlo simulation methods to assess the performance of our approach, assuming that the univariate stock price follows three widely applied models: Variance Gamma, Heston's Stochastic Volatility and Affine Heston Nandi GARCH(1,1) model.

Suggested Citation

  • Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2112.11968
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.11968
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    2. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    3. Bjerksund, Petter & Stensland, Gunnar, 2006. "Closed form spread option valuation," Discussion Papers 2006/20, Norwegian School of Economics, Department of Business and Management Science.
    4. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    7. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    10. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    11. Troels Sønderby Christensen & Fred Espen Benth, 2020. "Modelling the joint behaviour of electricity prices in interconnected markets," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1441-1456, September.
    12. Jente Van Belle & Steven Vanduffel & Jing Yao, 2019. "Closed‐form approximations for spread options in Lévy markets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 732-746, May.
    13. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    14. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    15. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roza Galeeva & Zi Wang, 2024. "Sector Formula for Approximation of Spread Option Value & Greeks and Its Applications," Commodities, MDPI, vol. 3(3), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    2. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    3. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    4. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    5. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    6. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    7. Wenjun Zhang & Jin E. Zhang, 2020. "GARCH Option Pricing Models and the Variance Risk Premium," JRFM, MDPI, vol. 13(3), pages 1-21, March.
    8. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    9. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    10. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
    11. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," Post-Print hal-00511965, HAL.
    12. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    13. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," PSE-Ecole d'économie de Paris (Postprint) hal-00511965, HAL.
    14. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    15. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    16. Mozumder, Sharif & Frijns, Bart & Talukdar, Bakhtear & Kabir, M. Humayun, 2024. "On practitioners closed-form GARCH option pricing," International Review of Financial Analysis, Elsevier, vol. 94(C).
    17. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    18. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    19. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    20. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.11968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.