IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p373-395n13.html
   My bibliography  Save this article

Two symmetric and computationally efficient Gini correlations

Author

Listed:
  • Vanderford Courtney

    (Department of Mathematics, University of Mississippi)

  • Sang Yongli

    (Department of Mathematics, University of Louisiana at Lafayette)

  • Dang Xin

    (Department of Mathematics, University of Mississippi)

Abstract

Standard Gini correlation plays an important role in measuring the dependence between random variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmetric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored. The influence function approach is utilized to study the robustness and the asymptotic behavior of these correlations. The asymptotic relative efficiencies are considered to compare several popular correlations under symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Simulation and real data application are conducted to demonstrate the desirable performance of the two new symmetric Gini correlations.

Suggested Citation

  • Vanderford Courtney & Sang Yongli & Dang Xin, 2020. "Two symmetric and computationally efficient Gini correlations," Dependence Modeling, De Gruyter, vol. 8(1), pages 373-395, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:373-395:n:13
    DOI: 10.1515/demo-2020-0020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0020
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    2. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    3. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    4. Furman, Edward & Zitikis, Ričardas, 2017. "Beyond The Pearson Correlation: Heavy-Tailed Risks, Weighted Gini Correlations, And A Gini-Type Weighted Insurance Pricing Model," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 919-942, September.
    5. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    6. Xin Dang & Hailin Sang & Lauren Weatherall, 2019. "Gini covariance matrix and its affine equivariant version," Statistical Papers, Springer, vol. 60(3), pages 641-666, June.
    7. Christian Genest & Johanna Nešlehová & Noomen Ben Ghorbal, 2010. "Spearman's footrule and Gini's gamma: a review with complements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(8), pages 937-954.
    8. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    9. E. Schechtman & S. Yitzhaki, 2003. "A Family of Correlation Coefficients Based on the Extended Gini Index," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(2), pages 129-146, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanderford Courtney & Sang Yongli & Dang Xin, 2020. "Two symmetric and computationally efficient Gini correlations," Dependence Modeling, De Gruyter, vol. 8(1), pages 373-395, January.
    2. Sudheesh K. Kattumannil & N. Sreelakshmi & N. Balakrishnan, 2022. "Non-Parametric Inference for Gini Covariance and its Variants," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 790-807, August.
    3. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    4. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    5. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    6. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    7. Liebscher Eckhard, 2017. "Copula-Based Dependence Measures For Piecewise Monotonicity," Dependence Modeling, De Gruyter, vol. 5(1), pages 198-220, August.
    8. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    9. Sergio Ocampo, 2019. "A task-based theory of occupations with multidimensional heterogeneity," 2019 Meeting Papers 477, Society for Economic Dynamics.
    10. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    11. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    12. Liebscher, Eckhard, 2021. "Kendall regression coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    14. Jia-Han Shih & Takeshi Emura, 2019. "Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula," Statistical Papers, Springer, vol. 60(4), pages 1101-1118, August.
    15. Manuela Schreyer & Roland Paulin & Wolfgang Trutschnig, 2017. "On the exact region determined by Kendall's τ and Spearman's ρ," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 613-633, March.
    16. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    17. Xin Dang & Dao Nguyen & Yixin Chen & Junying Zhang, 2021. "A new Gini correlation between quantitative and qualitative variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1314-1343, December.
    18. Silvia Terzi & Luca Moroni, 2022. "Local Concordance and Some Applications," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 457-470, June.
    19. Kamil Gala, 2015. "On the probability distribution of the present value of benefits in multiple life insurance," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 37, pages 13-38.
    20. Machová Renáta & Korcsmáros Enikő & Marča Roland & Esseová Monika, 2022. "An International Analysis of Consumers’ Consciousness During the Covid-19 Pandemic in Slovakia and Hungary," Folia Oeconomica Stetinensia, Sciendo, vol. 22(1), pages 130-151, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:373-395:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.