IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i3p544-567.html
   My bibliography  Save this article

On rank correlation measures for non-continuous random variables

Author

Listed:
  • Neslehová, Johanna

Abstract

For continuous random variables, many dependence concepts and measures of association can be expressed in terms of the corresponding copula only and are thus independent of the marginal distributions. This interrelationship generally fails as soon as there are discontinuities in the marginal distribution functions. In this paper, we consider an alternative transformation of an arbitrary random variable to a uniformly distributed one. Using this technique, the class of all possible copulas in the general case is investigated. In particular, we show that one of its members--the standard extension copula introduced by Schweizer and Sklar--captures the dependence structures in an analogous way the unique copula does in the continuous case. Furthermore, we consider measures of concordance between arbitrary random variables and obtain generalizations of Kendall's tau and Spearman's rho that correspond to the sample version of these quantities for empirical distributions.

Suggested Citation

  • Neslehová, Johanna, 2007. "On rank correlation measures for non-continuous random variables," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 544-567, March.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:544-567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00203-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    2. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    3. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Shahe Emran & Francisco H. G. Ferreira & Yajing Jiang & Yan Sun, 2023. "Occupational dualism and intergenerational educational mobility in the rural economy: evidence from China and India," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(3), pages 743-773, September.
    2. Faugeras, Olivier P., 2015. "Maximal coupling of empirical copulas for discrete vectors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 179-186.
    3. Michel Denuit & Mhamed Mesfioui & Julien Trufin, 2019. "Bounds on Concordance-Based Validation Statistics in Regression Models for Binary Responses," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 491-509, June.
    4. Denuit, Michel & Mesfoui, Mhamed & Trufin, Julien, 2019. "Concordance-based predictive measures in regression models for discrete responses," LIDAM Discussion Papers ISBA 2019005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel & Mesfioui, Mhamet & Trufin, Julien, 2016. "Bounds on Concordance-Based Validation Statistics in Regression Models for Binary Responses," LIDAM Discussion Papers ISBA 2016046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    2. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    3. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    4. Liebscher Eckhard, 2017. "Copula-Based Dependence Measures For Piecewise Monotonicity," Dependence Modeling, De Gruyter, vol. 5(1), pages 198-220, August.
    5. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    6. Vanderford Courtney & Sang Yongli & Dang Xin, 2020. "Two symmetric and computationally efficient Gini correlations," Dependence Modeling, De Gruyter, vol. 8(1), pages 373-395, January.
    7. Machová Renáta & Korcsmáros Enikő & Marča Roland & Esseová Monika, 2022. "An International Analysis of Consumers’ Consciousness During the Covid-19 Pandemic in Slovakia and Hungary," Folia Oeconomica Stetinensia, Sciendo, vol. 22(1), pages 130-151, June.
    8. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    9. Fuchs Sebastian, 2016. "A Biconvex Form for Copulas," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, February.
    10. Ying Zhang & Chuancun Yin, 2014. "A new multivariate dependence measure based on comonotonicity," Papers 1410.7845, arXiv.org.
    11. Naoyuki Ishimura & Naohiro Yoshida, 2017. "On a measure of dependence for extreme value copulas," EcoMod2017 10311, EcoMod.
    12. Sergio Ortobelli & Tomáš Tichý, 2015. "On the impact of semidefinite positive correlation measures in portfolio theory," Annals of Operations Research, Springer, vol. 235(1), pages 625-652, December.
    13. Antonio Dalessandro & Gareth W. Peters, 2018. "Tensor Approximation of Generalized Correlated Diffusions and Functional Copula Operators," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 237-271, March.
    14. Claudio G. Borroni, 2019. "Mutual association measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 571-591, December.
    15. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    16. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    17. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    18. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    19. Sergio Ocampo, 2019. "A task-based theory of occupations with multidimensional heterogeneity," 2019 Meeting Papers 477, Society for Economic Dynamics.
    20. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:544-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.