IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v235y2015i1p625-65210.1007-s10479-015-1962-x.html
   My bibliography  Save this article

On the impact of semidefinite positive correlation measures in portfolio theory

Author

Listed:
  • Sergio Ortobelli
  • Tomáš Tichý

Abstract

In this paper potential usage of different correlation measures in portfolio problems is studied. We characterize especially semidefinite positive correlation measures consistent with the choices of risk-averse investors. Moreover, we propose a new approach to portfolio selection problem, which optimizes the correlation between the portfolio and one or two market benchmarks. We also discuss why should correlation measures be used to reduce the dimensionality of large scale portfolio problems. Finally, through an empirical analysis, we show the impact of different correlation measures on portfolio selection problems and on dimensionality reduction problems. In particular, we compare the ex post sample paths of several portfolio strategies based on different risk measures and correlation measures. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Sergio Ortobelli & Tomáš Tichý, 2015. "On the impact of semidefinite positive correlation measures in portfolio theory," Annals of Operations Research, Springer, vol. 235(1), pages 625-652, December.
  • Handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:625-652:10.1007/s10479-015-1962-x
    DOI: 10.1007/s10479-015-1962-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-015-1962-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-015-1962-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Gabor Papp & Szilard Pafka & Maciej A. Nowak & Imre Kondor, 2005. "Random Matrix Filtering in Portfolio Optimization," Papers physics/0509235, arXiv.org.
    3. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    4. Stephen A. Ross, 2005. "Mutual Fund Separation in Financial Theory—The Separating Distributions," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 10, pages 309-356, World Scientific Publishing Co. Pte. Ltd..
    5. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    6. Varga-Haszonits, I. & Kondor, I., 2007. "Noise sensitivity of portfolio selection in constant conditional correlation GARCH models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 307-318.
    7. Michael Grabchak & Gennady Samorodnitsky, 2010. "Do financial returns have finite or infinite variance? A paradox and an explanation," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 883-893.
    8. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Sergio Ortobelli Lozza & Enrico Angelelli & Daniele Toninelli, 2011. "Set-Portfolio Selection with the Use of Market Stochastic Bounds," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 5-24, November.
    11. Stoyan Stoyanov & Svetlozar Rachev & Frank Fabozzi, 2013. "Sensitivity of portfolio VaR and CVaR to portfolio return characteristics," Annals of Operations Research, Springer, vol. 205(1), pages 169-187, May.
    12. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    13. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    14. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    15. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    16. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    2. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    3. Anlan Wang & Aleš Kresta & Tomáš Tichý, 2024. "Evaluation of strategy portfolios," Computational Management Science, Springer, vol. 21(1), pages 1-27, June.
    4. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    5. repec:prg:jnlpep:v:preprint:id:636:p:1-28 is not listed on IDEAS
    6. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    7. Juszczuk, Przemysław & Kaliszewski, Ignacy & Miroforidis, Janusz & Podkopaev, Dmitry, 2022. "Mean--variance portfolio selection problem: Asset reduction via nondominated sorting," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 263-272.
    8. Bohumil Stádník & Václav Žďárek, 2017. "Volatility Strangeness of Bonds - How to Define and What Does it Bring?," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(5), pages 602-629.
    9. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2019. "On the use of conditional expectation in portfolio selection problems," Annals of Operations Research, Springer, vol. 274(1), pages 501-530, March.
    10. Mohammad Mehdi Hosseinzadeh & Sergio Ortobelli Lozza & Farhad Hosseinzadeh Lotfi & Vittorio Moriggia, 2023. "Portfolio optimization with asset preselection using data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 287-310, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    2. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2019. "On the use of conditional expectation in portfolio selection problems," Annals of Operations Research, Springer, vol. 274(1), pages 501-530, March.
    3. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    4. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2020. "An optimization–diversification approach to portfolio selection," Journal of Global Optimization, Springer, vol. 76(2), pages 245-265, February.
    5. Mohammad Mehdi Hosseinzadeh & Sergio Ortobelli Lozza & Farhad Hosseinzadeh Lotfi & Vittorio Moriggia, 2023. "Portfolio optimization with asset preselection using data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 287-310, March.
    6. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    7. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.
    8. Sergio Ortobelli Lozza & Enrico Angelelli & Daniele Toninelli, 2011. "Set-Portfolio Selection with the Use of Market Stochastic Bounds," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 5-24, November.
    9. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    10. Sergio Ortobelli & Sebastiano Vitali & Marco Cassader & Tomáš Tichý, 2018. "Portfolio selection strategy for fixed income markets with immunization on average," Annals of Operations Research, Springer, vol. 260(1), pages 395-415, January.
    11. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    12. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    13. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    14. Ortobelli, Sergio & Rachev, Svetlozar T. & Fabozzi, Frank J., 2010. "Risk management and dynamic portfolio selection with stable Paretian distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 195-211, March.
    15. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    16. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    17. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    18. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    19. Palczewski, Andrzej & Palczewski, Jan, 2019. "Black–Litterman model for continuous distributions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 708-720.
    20. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:235:y:2015:i:1:p:625-652:10.1007/s10479-015-1962-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.