IDEAS home Printed from https://ideas.repec.org/a/tec/techni/v4y2022i1p239-249.html
   My bibliography  Save this article

Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey

Author

Listed:
  • Lubna Jamal Chachan

Abstract

Suspended sediment load (SSL) prediction study is critical to water resource management. This paper presents studies related to the prediction of SSL using machine learning (ML) algorithms over the last 13 years. This research gives a survey of current studies that are used machine learning techniques to predict sediment load on several rivers in different reign. Also, it aims to find a performance model to predict the SSL. This is done by making comparisons between several studies that used machine learning techniques to predict sediment load on several rivers using different time scales. Several metrics were used to determine the best prediction model. Most of the metrics used are: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2) and Nash-Sutcliffe Efficiency Coefficient (NSE). The results of comparisons using different ML algorithms to predict the SSL have shown that the Multilayer perceptron (MLP) algorithm is the best compared to other algorithms.

Suggested Citation

  • Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
  • Handle: RePEc:tec:techni:v:4:y:2022:i:1:p:239-249
    DOI: 10.47577/technium.v4i10.8099
    as

    Download full text from publisher

    File URL: https://techniumscience.com/index.php/technium/article/view/8099/2932
    Download Restriction: no

    File URL: https://techniumscience.com/index.php/technium/article/view/8099
    Download Restriction: no

    File URL: https://libkey.io/10.47577/technium.v4i10.8099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melesse, A.M. & Ahmad, S. & McClain, M.E. & Wang, X. & Lim, Y.H., 2011. "Suspended sediment load prediction of river systems: An artificial neural network approach," Agricultural Water Management, Elsevier, vol. 98(5), pages 855-866, March.
    2. Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
    3. Wing Son Loh & Ren Jie Chin & Lloyd Ling & Sai Hin Lai & Eugene Zhen Xiang Soo, 2021. "Application of Machine Learning Model for the Prediction of Settling Velocity of Fine Sediments," Mathematics, MDPI, vol. 9(23), pages 1-18, December.
    4. Siyamak Doroudi & Ahmad Sharafati & Seyed Hossein Mohajeri & Haitham Afan, 2021. "Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method," Complexity, Hindawi, vol. 2021, pages 1-13, March.
    5. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    6. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    7. Vahid Nourani & Huseyin Gokcekus & Gebre Gelete & Haitham Afan, 2021. "Estimation of Suspended Sediment Load Using Artificial Intelligence-Based Ensemble Model," Complexity, Hindawi, vol. 2021, pages 1-19, February.
    8. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    2. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    3. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    4. LaĆ­s Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.
    5. Yash Agrawal & Manoranjan Kumar & Supriya Ananthakrishnan & Gopalakrishnan Kumarapuram, 2022. "Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1025-1042, February.
    6. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    7. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    8. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    9. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    10. Kai Zhang & Wang Xuan & Bai Yikui & Xu Xiuquan, 2021. "Prediction of sediment transport capacity based on slope gradients and flow discharge," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
    11. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    12. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    13. Gaurav Singh & A. R. S. Kumar & R. K. Jaiswal & Surjeet Singh & R. M. Singh, 2022. "Model coupling approach for daily runoff simulation in Hamp Pandariya catchment of Chhattisgarh state in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12311-12339, October.
    14. Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
    15. Seoro Lee & Jonggun Kim & Gwanjae Lee & Jiyeong Hong & Joo Hyun Bae & Kyoung Jae Lim, 2021. "Prediction of Aquatic Ecosystem Health Indices through Machine Learning Models Using the WGAN-Based Data Augmentation Method," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    16. Alireza Moghaddam Nia & Debasmita Misra & Mahsa Hasanpour Kashani & Mohsen Ghafari & Madhumita Sahoo & Marzieh Ghodsi & Mohammad Tahmoures & Somayeh Taheri & Maryam Sadat Jaafarzadeh, 2023. "Runoff and Sediment Yield Processes in a Tropical Eastern Indian River Basin: A Multiple Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-15, August.
    17. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    18. Shahab Araghinejad & Nima Fayaz & Seyed-Mohammad Hosseini-Moghari, 2018. "Development of a Hybrid Data Driven Model for Hydrological Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3737-3750, September.
    19. Khabat Khosravi & Ali Golkarian & John P. Tiefenbacher, 2022. "Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 699-716, January.
    20. Zhang, Hua & Zimba, Paul V., 2017. "Analyzing the effects of estuarine freshwater fluxes on fish abundance using artificial neural network ensembles," Ecological Modelling, Elsevier, vol. 359(C), pages 103-116.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tec:techni:v:4:y:2022:i:1:p:239-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Maria Golita (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.