Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03067-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xinqin Gu & Li Yao & Lifeng Wu, 2023. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
- Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
- Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
- Xiao, Jing & Sun, Fubao & Wang, Tingting & Wang, Hong, 2024. "Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data," Agricultural Water Management, Elsevier, vol. 298(C).
- Long Zhao & Liwen Xing & Yuhang Wang & Ningbo Cui & Hanmi Zhou & Yi Shi & Sudan Chen & Xinbo Zhao & Zhe Li, 2023. "Prediction Model for Reference Crop Evapotranspiration Based on the Back-propagation Algorithm with Limited Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1207-1222, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
- Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
- Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
- Pandey, Dharen Kumar & Hunjra, Ahmed Imran & Bhaskar, Ratikant & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022," Resources Policy, Elsevier, vol. 86(PA).
- Radhikesh Kumar & Maheshwari Prasad Singh & Bishwajit Roy & Afzal Hussain Shahid, 2021. "A Comparative Assessment of Metaheuristic Optimized Extreme Learning Machine and Deep Neural Network in Multi-Step-Ahead Long-term Rainfall Prediction for All-Indian Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1927-1960, April.
- Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
More about this item
Keywords
Ensembled machine learning; Reference evapotranspiration; Decision tree; XGBoost;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03067-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.