IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i3d10.1007_s11269-022-03067-7.html
   My bibliography  Save this article

Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm

Author

Listed:
  • Yash Agrawal

    (Gramworkx Agrotech Pvt Ltd - GramworkX, Keonics)

  • Manoranjan Kumar

    (Central Research Institute for Dryland Agriculture)

  • Supriya Ananthakrishnan

    (Gramworkx Agrotech Pvt Ltd - GramworkX, Keonics)

  • Gopalakrishnan Kumarapuram

    (Gramworkx Agrotech Pvt Ltd - GramworkX, Keonics)

Abstract

The present study investigates and evaluate the scope and potential of modern computing tools and techniques such as ensembled machine learning methods in estimating ETo. Five different type of machine learning model namely (i) decision tree, (ii) Random Forest (RF), (iii) Adaptive Boosting (AdaBoost), (iv) Gradient Boosting Machine (GBM) and (v) Extreme Gradient Boosting (XGBoost) were compared for performance in estimating daily P-M ETo values. The RF, GBM and XGBoost model performed extremely well on the criteria of weighted standard error of estimate (WSEE) which is less than 0.25 mm/d. Furthermore, the ensembled machine learning model substantiated by boosting algorithm (XGBoost) significantly enhance the performance in estimating P-M ETo (WSEE is less than 0.17 mm/d). Moreover, the sensitivity analysis suggested that the data requirement for XGBoost is commonly available at most of the places unlike P-M ETo model. Given the generalization capability of the model, it can be successfully implemented for other similar location where comprehensive data are not available.

Suggested Citation

  • Yash Agrawal & Manoranjan Kumar & Supriya Ananthakrishnan & Gopalakrishnan Kumarapuram, 2022. "Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1025-1042, February.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03067-7
    DOI: 10.1007/s11269-022-03067-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03067-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03067-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinqin Gu & Li Yao & Lifeng Wu, 2023. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    2. Stephen Luo Sheng Yong & Jing Lin Ng & Yuk Feng Huang & Chun Kit Ang & Norashikin Ahmad Kamal & Majid Mirzaei & Ali Najah Ahmed, 2024. "Enhanced Daily Reference Evapotranspiration Estimation Using Optimized Hybrid Support Vector Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4213-4241, September.
    3. Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
    4. Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
    5. Xiao, Jing & Sun, Fubao & Wang, Tingting & Wang, Hong, 2024. "Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Long Zhao & Liwen Xing & Yuhang Wang & Ningbo Cui & Hanmi Zhou & Yi Shi & Sudan Chen & Xinbo Zhao & Zhe Li, 2023. "Prediction Model for Reference Crop Evapotranspiration Based on the Back-propagation Algorithm with Limited Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1207-1222, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Pandey, Dharen Kumar & Hunjra, Ahmed Imran & Bhaskar, Ratikant & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022," Resources Policy, Elsevier, vol. 86(PA).
    3. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    4. Radhikesh Kumar & Maheshwari Prasad Singh & Bishwajit Roy & Afzal Hussain Shahid, 2021. "A Comparative Assessment of Metaheuristic Optimized Extreme Learning Machine and Deep Neural Network in Multi-Step-Ahead Long-term Rainfall Prediction for All-Indian Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1927-1960, April.
    5. Ndivhuwo Ramovha & Martha Chadyiwa & Freeman Ntuli & Thandiwe Sithole, 2024. "The Potential of Stormwater Management Strategies and Artificial Intelligence Modeling Tools to Improve Water Quality: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3527-3560, August.
    6. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    7. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03067-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.