IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v242y2020ics0378377420303395.html
   My bibliography  Save this article

Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)

Author

Listed:
  • Yin, Juan
  • Deng, Zhen
  • Ines, Amor V.M.
  • Wu, Junbin
  • Rasu, Eeswaran

Abstract

As the standard method to compute reference evapotranspiration (ET0), Penman-Monteith (PM) method requires eight meteorological input variables, which makes it difficult to apply in data scarce regions. To overcome this problem, a hybrid bi-directional long short-term memory (Bi-LSTM) model was developed to forecast short-term (1–7-day lead time) daily ET0. The model was trained, validated and tested using three meteorological variables for the period of 2006–2018 at selected three meteorological stations located in the semi-arid region of central Ningxia, China. The performance of the hybrid Bi-LSTM model to forecast short-term daily ET0 was evaluated against daily ET0 calculated by the Penman-Monteith method using the statistical metrics namely, mean absolute error (MAE), root mean square error (RMSE), Pearson's correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE). The results showed that the hybrid Bi-LSTM model with a combination of three meteorological inputs (maximum temperature, minimum temperature and sunshine duration) provides the best forecast performance for short-term daily ET0 at the selected meteorological stations. When averaged across stations, the statistical performance at different forecast lead time were as follows; 1-day lead time: RMSE = 0.159 mm day−1, MAE = 0.039 mm day−1, R = 0.992, NSE = 0.988; 4-day lead time: RMSE = 0.247 mm day−1, MAE = 0.075 mm day−1, R = 0.972, NSE = 0.985 and 7-day lead time: RMSE = 0.323 mm day−1, MAE = 0.089 mm day−1, R = 0.943, NSE = 0.982. Moreover, the hybrid Bi-LSTM model consistently improved the forecast performance of short-term daily ET0 compared to the adjusted Hargreaves-Samani (HS) method and the general Bi-LSTM model. The hybrid Bi-LSTM model developed in this study is currently integrated into the modern intelligent irrigation system of 30 ha of Lycium barbarum plantation in central Ningxia in China, a region with limited meteorological data. It is recommended however that the hybrid Bi-LSTM should be evaluated across a wide range of climatic conditions in different regions of the world.

Suggested Citation

  • Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:agiwat:v:242:y:2020:i:c:s0378377420303395
    DOI: 10.1016/j.agwat.2020.106386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420303395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
    2. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    3. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    4. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    5. Pelosi, A. & Medina, H. & Villani, P. & D’Urso, G. & Chirico, G.B., 2016. "Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system," Agricultural Water Management, Elsevier, vol. 178(C), pages 106-118.
    6. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    7. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    8. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    9. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    10. Yang, Yang & Cui, Yuanlai & Bai, Kaihua & Luo, Tongyuan & Dai, Junfeng & Wang, Weiguang & Luo, Yufeng, 2019. "Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 211(C), pages 70-80.
    11. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    2. Mehdi Jamei & Mumtaz Ali & Anurag Malik & Ramendra Prasad & Shahab Abdulla & Zaher Mundher Yaseen, 2022. "Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4637-4676, September.
    3. Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
    4. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    5. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    7. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Zian Lin & Yuanfa Ji & Weibin Liang & Xiyan Sun, 2022. "Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    9. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Fahad Radhi Alharbi & Denes Csala, 2021. "Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks," Energies, MDPI, vol. 14(20), pages 1-22, October.
    11. Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    5. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    6. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
    11. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).
    12. Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    13. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    14. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    16. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    17. Erdem Küçüktopcu & Emirhan Cemek & Bilal Cemek & Halis Simsek, 2023. "Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    18. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    19. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    20. Yang, Yang & Cui, Yuanlai & Bai, Kaihua & Luo, Tongyuan & Dai, Junfeng & Wang, Weiguang & Luo, Yufeng, 2019. "Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 211(C), pages 70-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:242:y:2020:i:c:s0378377420303395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.