IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3141-d695966.html
   My bibliography  Save this article

Application of Machine Learning Model for the Prediction of Settling Velocity of Fine Sediments

Author

Listed:
  • Wing Son Loh

    (Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Ren Jie Chin

    (Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Lloyd Ling

    (Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Sai Hin Lai

    (Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Eugene Zhen Xiang Soo

    (Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

Abstract

Sedimentation management is one of the primary factors in achieving sustainable development of water resources. However, due to difficulties in conducting in-situ tests, and the complex nature of fine sediments, it remains a challenging task when dealing with issues related to settling velocity. Hence, the machine learning model appears as a suitable tool to predict the settling velocity of fine sediments in water bodies. In this study, three different machine learning-based models, namely, the radial basis function neural network (RBFNN), back propagation neural network (BPNN), and self-organizing feature map (SOFM), were developed with four hydraulic parameters, including the inlet depth, particle size, and the relative x and y particle positions. The five distinct statistical measures, consisting of the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), mean value accounted for (MVAF), and total variance explained (TVE), were used to assess the performance of the models. The SOFM with the 25 × 25 Kohonen map had shown superior results with RMSE of 0.001307, NSE of 0.7170, MAE of 0.000647, MVAF of 101.25%, and TVE of 71.71%.

Suggested Citation

  • Wing Son Loh & Ren Jie Chin & Lloyd Ling & Sai Hin Lai & Eugene Zhen Xiang Soo, 2021. "Application of Machine Learning Model for the Prediction of Settling Velocity of Fine Sediments," Mathematics, MDPI, vol. 9(23), pages 1-18, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3141-:d:695966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
    2. MacMillan, Andrew & Schell, Kristen R. & Roughley, Colter, 2023. "A predictive model of velocity for local hydrokinetic power assessment based on remote sensing data," Renewable Energy, Elsevier, vol. 211(C), pages 285-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    2. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    3. Emelia Opoku Aboagye & Rajesh Kumar, 2019. "Simple and Efficient Computational Intelligence Strategies for Effective Collaborative Decisions," Future Internet, MDPI, vol. 11(1), pages 1-16, January.
    4. Jong-Wook Kim & Heungju Ahn & Hyeon Cheol Seo & Sang Cheol Lee, 2022. "Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)," Energies, MDPI, vol. 15(8), pages 1-15, April.
    5. Al-Lawati, Razan A.H. & Faiz, Tasnim Ibn & Noor-E-Alam, Md., 2024. "A nationwide multi-location multi-resource stochastic programming based energy planning framework," Energy, Elsevier, vol. 295(C).
    6. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    7. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    8. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Işık, Cem & Bulut, Umit & Ongan, Serdar & Islam, Hasibul & Irfan, Muhammad, 2024. "Exploring how economic growth, renewable energy, internet usage, and mineral rents influence CO2 emissions: A panel quantile regression analysis for 27 OECD countries," Resources Policy, Elsevier, vol. 92(C).
    10. Khanahmadi, Abbas & Ghaffarpour, Reza, 2022. "A cost-effective and emission-Aware hybrid system considering uncertainty: A case study in a remote area," Renewable Energy, Elsevier, vol. 201(P1), pages 977-992.
    11. Daniel Akinyele & Abraham Amole & Elijah Olabode & Ayobami Olusesi & Titus Ajewole, 2021. "Simulation and Analysis Approaches to Microgrid Systems Design: Emerging Trends and Sustainability Framework Application," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    12. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    13. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    14. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Yueqiang Xu & Petri Ahokangas & Jean-Nicolas Louis & Eva Pongrácz, 2019. "Electricity Market Empowered by Artificial Intelligence: A Platform Approach," Energies, MDPI, vol. 12(21), pages 1-21, October.
    16. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    18. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    19. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3141-:d:695966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.