IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5540284.html
   My bibliography  Save this article

Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method

Author

Listed:
  • Siyamak Doroudi
  • Ahmad Sharafati
  • Seyed Hossein Mohajeri
  • Haitham Afan

Abstract

Predicting suspended sediment load (SSL) in water resource management requires efficient and reliable predicted models. This study considers the support vector regression (SVR) method to predict daily suspended sediment load. Since the SVR has unknown parameters, the observer-teacher-learner-based Optimization (OTLBO) method is integrated with the SVR model to provide a novel hybrid predictive model. The SVR combined with the genetic algorithm (SVR-GA) is used as an alternative model. To explore the performance and application of the proposed models, five input combinations of rainfall and discharge data of Cham Siah River catchment are provided. The predictive models are assessed using various numerical and visual indicators. The results indicate that the SVR-OTLBO model offers a higher prediction performance than other models employed in the current study. Specifically, SVR-OTLBO model offers highest Pearson correlation coefficient (R = 0.9768), Willmott’s Index (WI = 0.9812), ratio of performance to IQ (RPIQ = 0.9201), and modified index of agreement (md = 0.7411) and the lowest relative root mean square error (RRMSE = 0.5371) in comparison with SVR-GA (R = 0.9704, WI = 0.9794, RPIQ = 0.8521, and md = 0.7323, 0.5617) and SVR (R = 0.9501, WI = 0.9734, RPIQ = 0.3229, md = 0.4338, and RRMSE = 1.0829) models, respectively.

Suggested Citation

  • Siyamak Doroudi & Ahmad Sharafati & Seyed Hossein Mohajeri & Haitham Afan, 2021. "Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method," Complexity, Hindawi, vol. 2021, pages 1-13, March.
  • Handle: RePEc:hin:complx:5540284
    DOI: 10.1155/2021/5540284
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5540284.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5540284.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5540284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
    2. Kai Zhang & Wang Xuan & Bai Yikui & Xu Xiuquan, 2021. "Prediction of sediment transport capacity based on slope gradients and flow discharge," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5540284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.