IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5039-d799819.html
   My bibliography  Save this article

Application of GIS and Machine Learning to Predict Flood Areas in Nigeria

Author

Listed:
  • Eseosa Halima Ighile

    (School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan)

  • Hiroaki Shirakawa

    (School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan)

  • Hiroki Tanikawa

    (School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan)

Abstract

Floods are one of the most devastating forces in nature. Several approaches for identifying flood-prone locations have been developed to reduce the overall harmful impacts on humans and the environment. However, due to the increased frequency of flooding and related disasters, coupled with the continuous changes in natural and social-economic conditions, it has become vital to predict areas with the highest probability of flooding to ensure effective measures to mitigate impending disasters. This study predicted the flood susceptible areas in Nigeria based on historical flood records from 1985~2020 and various conditioning factors. To evaluate the link between flood incidence and the fifteen (15) explanatory variables, which include climatic, topographic, land use and proximity information, the artificial neural network (ANN) and logistic regression (LR) models were trained and tested to develop a flood susceptibility map. The receiver operating characteristic curve (ROC) and area under the curve (AUC) were used to evaluate both model accuracies. The results show that both techniques can model and predict flood-prone areas. However, the ANN model produced a higher performance and prediction rate than the LR model, 76.4% and 62.5%, respectively. In addition, both models highlighted that those areas with the highest susceptibility to flood are the low-lying regions in the southern extremities and around water areas. From the study, we can establish that machine learning techniques can effectively map and predict flood-prone areas and serve as a tool for developing flood mitigation policies and plans.

Suggested Citation

  • Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5039-:d:799819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haynes, Katharine & Coates, Lucinda & van den Honert, Rob & Gissing, Andrew & Bird, Deanne & Dimer de Oliveira, Felipe & D’Arcy, Rebecca & Smith, Chloe & Radford, Deirdre, 2017. "Exploring the circumstances surrounding flood fatalities in Australia—1900–2015 and the implications for policy and practice," Environmental Science & Policy, Elsevier, vol. 76(C), pages 165-176.
    2. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    3. Qian Liu & Li Fang & Guoliang Yu & Depeng Wang & Chuan-Le Xiao & Kai Wang, 2019. "Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Saeid Janizadeh & Mohammadtaghi Avand & Abolfazl Jaafari & Tran Van Phong & Mahmoud Bayat & Ebrahim Ahmadisharaf & Indra Prakash & Binh Thai Pham & Saro Lee, 2019. "Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    5. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    6. Youngmin Seo & Sungwon Kim & Ozgur Kisi & Vijay P. Singh & Kamban Parasuraman, 2016. "River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4011-4035, September.
    7. Chinh Luu & Quynh Duy Bui & Romulus Costache & Luan Thanh Nguyen & Thu Thuy Nguyen & Tran Phong & Hiep Le & Binh Thai Pham, 2021. "Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3229-3251, September.
    8. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    9. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    10. Intrator, Orna & Intrator, Nathan, 2001. "Interpreting neural-network results: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 37(3), pages 373-393, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chika Maduabuchi & Chinedu Nsude & Chibuoke Eneh & Emmanuel Eke & Kingsley Okoli & Emmanuel Okpara & Christian Idogho & Bryan Waya & Catur Harsito, 2023. "Renewable Energy Potential Estimation Using Climatic-Weather-Forecasting Machine Learning Algorithms," Energies, MDPI, vol. 16(4), pages 1-20, February.
    2. Samir Shehu Danhassan & Ahmed Abubakar & Aminu Sulaiman Zangina & Mohammad Hadi Ahmad & Saddam A. Hazaea & Mohd Yusoff Ishak & Jiahua Zhang, 2023. "Flood Policy and Governance: A Pathway for Policy Coherence in Nigeria," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    3. Shakti P. C. & Kohin Hirano & Koyuru Iwanami, 2023. "Developing Flood Risk Zones during an Extreme Rain Event from the Perspective of Social Insurance Management," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    4. Maelaynayn El baida & Farid Boushaba & Mimoun Chourak & Mohamed Hosni & Hichame Sabar, 2024. "Classification machine learning models for urban flood hazard mapping: case study of Zaio, NE Morocco," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10013-10041, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    2. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    3. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    4. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    5. Shaohan Zhang & Shucheng Tan & Lifeng Liu & Duanyu Ding & Yongqi Sun & Jun Li, 2023. "Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, Ch," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    6. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    7. Saad S. Alarifi & Mohamed Abdelkareem & Fathy Abdalla & Mislat Alotaibi, 2022. "Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    8. Alaa M. Al-Abadi & Noor A. Al-Najar, 2020. "Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 461-491, January.
    9. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    10. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    11. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    12. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    13. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    14. Yash Agrawal & Manoranjan Kumar & Supriya Ananthakrishnan & Gopalakrishnan Kumarapuram, 2022. "Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1025-1042, February.
    15. Mustafa Najat Asaad & Şule Eryürük & Kağan Eryürük, 2022. "Forecasting of Streamflow and Comparison of Artificial Intelligence Methods: A Case Study for Meram Stream in Konya, Turkey," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    16. Vangelis Pitidis & Deodato Tapete & Jon Coaffee & Leon Kapetas & João Porto de Albuquerque, 2018. "Understanding the Implementation Challenges of Urban Resilience Policies: Investigating the Influence of Urban Geological Risk in Thessaloniki, Greece," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    17. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    18. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    19. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    20. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5039-:d:799819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.