IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i3d10.1007_s11269-020-02500-z.html
   My bibliography  Save this article

A Method for Predicting Long-Term Municipal Water Demands Under Climate Change

Author

Listed:
  • Salah L. Zubaidi

    (University of Wasit)

  • Sandra Ortega-Martorell

    (Liverpool John Moores University)

  • Patryk Kot

    (Liverpool John Moores University)

  • Rafid M. Alkhaddar

    (Liverpool John Moores University)

  • Mawada Abdellatif

    (Liverpool John Moores University)

  • Sadik K. Gharghan

    (Electrical Engineering Technical College Middle Technical University (MTU))

  • Maytham S. Ahmed

    (General Directorate of Electrical Energy Production-Basrah, Ministry of Electricity)

  • Khalid Hashim

    (Liverpool John Moores University)

Abstract

The accurate forecast of water demand is challenging for water utilities, specifically when considering the implications of climate change. As such, this is the first study that focuses on finding associations between monthly climate factors and municipal water consumption, using baseline data collected between 1980 and 2010. The aim of the study was to investigate the reliability and capability of a combination of techniques, including Singular Spectrum Analysis (SSA) and Artificial Neural Networks (ANNs), to accurately predict long-term, monthly water demands. The principal findings of this research are as follows: a) SSA is a powerful method when applied to remove the impact of socio-economic variables and noise, and to determine a stochastic signal for long-term water consumption time series; b) ANN performed better when optimised using the Lightning Search Algorithm (LSA-ANN) compared with other approaches used in previous studies, i.e. hybrid Particle Swarm Optimisation (PSO-ANN) and Gravitational Search Algorithm (GSA-ANN); c) the proposed LSA-ANN methodology was able to produce a highly accurate and robust model of water demand, achieving a correlation coefficient of 0.96 between observed and predicted water demand when using a validation dataset, and a very small root mean square error of 0.025.

Suggested Citation

  • Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-020-02500-z
    DOI: 10.1007/s11269-020-02500-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02500-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02500-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
    2. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    3. Hojat Karami & Saeed Farzin & Aylin Jahangiri & Mohammad Ehteram & Ozgur Kisi & Ahmed El-Shafie, 2019. "Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2741-2760, June.
    4. E. Pacchin & F. Gagliardi & S. Alvisi & M. Franchini, 2019. "A Comparison of Short-Term Water Demand Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1481-1497, March.
    5. Ammar Hussein Mutlag & Azah Mohamed & Hussain Shareef, 2016. "A Nature-Inspired Optimization-Based Optimum Fuzzy Logic Photovoltaic Inverter Controller Utilizing an eZdsp F28335 Board," Energies, MDPI, vol. 9(3), pages 1-32, February.
    6. Khan, M. Atikur Rahman & Poskitt, D.S., 2017. "Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application," International Journal of Forecasting, Elsevier, vol. 33(1), pages 199-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Fiorillo & Zoran Kapelan & Maria Xenochristou & Francesco De Paola & Maurizio Giugni, 2021. "Assessing the Impact of Climate Change on Future Water Demand using Weather Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1449-1462, March.
    2. Zachary Darby & Neelam Chandra Poudyal & Adam Frakes & Omkar Joshi, 2021. "Economic Analysis of Recreation Access at a Lake Facing Water Crisis due to Municipal Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2909-2920, July.
    3. Taís Maria Nunes Carvalho & Francisco Souza Filho, 2021. "Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3431-3445, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    2. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    3. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    4. Juan Bógalo & Pilar Poncela & Eva Senra, 2021. "Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    5. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
    6. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    7. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    8. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    9. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    11. Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
    12. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    13. Yuan Hong & Shengbin Wang & Ziyue Huang, 2017. "Efficient Energy Consumption Scheduling: Towards Effective Load Leveling," Energies, MDPI, vol. 10(1), pages 1-27, January.
    14. Homod, Raad Z. & Munahi, Basil Sh. & Mohammed, Hayder Ibrahim & Albadr, Musatafa Abbas Abbood & Abderrahmane, AISSA & Mahdi, Jasim M. & Ben Hamida, Mohamed Bechir & Alhasnawi, Bilal Naji & Albahri, A., 2024. "Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings," Applied Energy, Elsevier, vol. 356(C).
    15. Godiana Hagile Philipo & Josephine Nakato Kakande & Stefan Krauter, 2022. "Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping," Energies, MDPI, vol. 15(14), pages 1-18, July.
    16. Doğukan Aycı & Ferhat Öğüt & Ulaş Özen & Bora Batuhan İşgör & Sinan Küfeoğlu, 2021. "Energy Optimisation Models for Self-Sufficiency of a Typical Turkish Residential Electricity Customer of the Future," Energies, MDPI, vol. 14(19), pages 1-24, September.
    17. Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1, June.
    18. Irene Marzola & Stefano Alvisi & Marco Franchini, 2022. "A Comparison of Model-Based Methods for Leakage Localization in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5711-5727, November.
    19. Alireza Moghaddam Nia & Debasmita Misra & Mahsa Hasanpour Kashani & Mohsen Ghafari & Madhumita Sahoo & Marzieh Ghodsi & Mohammad Tahmoures & Somayeh Taheri & Maryam Sadat Jaafarzadeh, 2023. "Runoff and Sediment Yield Processes in a Tropical Eastern Indian River Basin: A Multiple Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-15, August.
    20. Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-020-02500-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.