IDEAS home Printed from https://ideas.repec.org/a/taf/servic/v34y2014i2p103-122.html
   My bibliography  Save this article

Using customer lifetime value to plan optimal promotions

Author

Listed:
  • Yeliz Ekinci
  • Füsun Ulengin
  • Nimet Uray

Abstract

The purpose of this study is to develop a methodology to guide managers in determining the optimal promotion campaigns to be directed towards different market segments in order to maximize the value of customers. For the purposes of this study, a two-step methodology is used, based on stochastic dynamic programming and the classification and regression tree. This methodology groups the customers according to their value. Within this framework, an experiment is conducted in which each of the different promotion campaigns is assigned to different randomly selected groups. The impact of each type of promotion on each type of market segment is analysed in order to find the optimal promotion campaigns appropriate for each. In contrast to previous research, this study takes into account a firm that provides more than one specific type of product or service. In addition, it analyses the impact of widely used types of promotion campaigns compared with the narrow scope of those investigated in previous studies. Therefore, this research presents important insights into managing relations with the customers in a more interactive and profitable way.

Suggested Citation

  • Yeliz Ekinci & Füsun Ulengin & Nimet Uray, 2014. "Using customer lifetime value to plan optimal promotions," The Service Industries Journal, Taylor & Francis Journals, vol. 34(2), pages 103-122, January.
  • Handle: RePEc:taf:servic:v:34:y:2014:i:2:p:103-122
    DOI: 10.1080/02642069.2013.763929
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02642069.2013.763929
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02642069.2013.763929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Kumar & Rajkumar Venkatesan & Tim Bohling & Denise Beckmann, 2008. "—The Power of CLV: Managing Customer Lifetime Value at IBM," Marketing Science, INFORMS, vol. 27(4), pages 585-599, 07-08.
    2. Pfeifer, Phillip E. & Ovchinnikov, Anton, 2011. "A Note on Willingness to Spend and Customer Lifetime Value for Firms with Limited Capacity," Journal of Interactive Marketing, Elsevier, vol. 25(3), pages 178-189.
    3. Haenlein, Michael & Kaplan, Andreas M. & Beeser, Anemone J., 2007. "A Model to Determine Customer Lifetime Value in a Retail Banking Context," European Management Journal, Elsevier, vol. 25(3), pages 221-234, June.
    4. Donald G. Morrison & Richard D. H. Chen & Sandra L. Karpis & Kathryn E. A. Britney, 1982. "Modelling Retail Customer Behavior at Merrill Lynch," Marketing Science, INFORMS, vol. 1(2), pages 123-141.
    5. Piersma, Nanda & Jonker, Jedid-Jah, 2004. "Determining the optimal direct mailing frequency," European Journal of Operational Research, Elsevier, vol. 158(1), pages 173-182, October.
    6. Kumar, V., 2010. "A Customer Lifetime Value-Based Approach to Marketing in the Multichannel, Multimedia Retailing Environment," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 71-85.
    7. W-K Ching & M K Ng & K-K Wong & E Altman, 2004. "Customer lifetime value: stochastic optimization approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 860-868, August.
    8. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    9. Jonker, J.-J. & Piersma, N. & Van den Poel, D., 2002. "Joint optimization of customer segmentation and marketing policy to maximize long-term profitability," Econometric Institute Research Papers EI 2002-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    11. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Xia & Ali Arian & Sriram Narayanamoorthy & Joshua Mabry, 2023. "RetailSynth: Synthetic Data Generation for Retail AI Systems Evaluation," Papers 2312.14095, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekinci, Yeliz & Ülengin, Füsun & Uray, Nimet & Ülengin, Burç, 2014. "Analysis of customer lifetime value and marketing expenditure decisions through a Markovian-based model," European Journal of Operational Research, Elsevier, vol. 237(1), pages 278-288.
    2. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    3. Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.
    4. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    5. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    6. Oğuzhan Kivrak & Cüneyt Akar, 2020. "Effect of Social Media Interactions on CLV in Telecommunications," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 447-468, March.
    7. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    8. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    9. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    10. Hans Buhl & Robert Klein & Johannes Kolb & Andrea Landherr, 2011. "CR 2 M—an approach for capacity control considering long-term effects on the value of a customer for the company," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(2), pages 187-204, December.
    11. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    12. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.
    13. Hans Buhl & Martin Gneiser & Julia Heidemann, 2009. "Ein modelltheoretischer Ansatz zur Planung von Investitionen in Kundenbeziehungen," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(2), pages 175-195, October.
    14. Kumar, V. & Pozza, Ilaria Dalla & Petersen, J. Andrew & Shah, Denish, 2009. "Reversing the Logic: The Path to Profitability through Relationship Marketing," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 147-156.
    15. Sam Aflaki & Ioana Popescu, 2014. "Managing Retention in Service Relationships," Management Science, INFORMS, vol. 60(2), pages 415-433, February.
    16. Kessara Kanchanapoom & Jongsawas Chongwatpol, 2023. "Integrated customer lifetime value (CLV) and customer migration model to improve customer segmentation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 172-185, June.
    17. A. Prinzie & D. Van Den Poel, 2005. "Constrained optimization of data-mining problems to improve model performance: A direct-marketing application," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/298, Ghent University, Faculty of Economics and Business Administration.
    18. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    19. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    20. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2014. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 305-329, September.
    21. Huan Yu & Ye Shi & Yugang Yu & Jie Liu & Feng Yang & Jie Wu, 2020. "Business analytics: online promotion with gift rewards," Annals of Operations Research, Springer, vol. 291(1), pages 1061-1076, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:servic:v:34:y:2014:i:2:p:103-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/FSIJ20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.