IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i2p341-353.html
   My bibliography  Save this article

Rank-based inference for the accelerated failure time model

Author

Listed:
  • Zhezhen Jin

Abstract

A broad class of rank-based monotone estimating functions is developed for the semiparametric accelerated failure time model with censored observations. The corresponding estimators can be obtained via linear programming, and are shown to be consistent and asymptotically normal. The limiting covariance matrices can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. The new estimators represent consistent roots of the non-monotone estimating equations based on the familiar weighted log-rank statistics. Simulation studies demonstrate that the proposed methods perform well in practical settings. Two real examples are provided. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:341-353
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:341-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.