IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v175y2020ics0047259x19300545.html
   My bibliography  Save this article

A consistent variable selection method in high-dimensional canonical discriminant analysis

Author

Listed:
  • Oda, Ryoya
  • Suzuki, Yuya
  • Yanagihara, Hirokazu
  • Fujikoshi, Yasunori

Abstract

In this paper, we obtain the sufficient conditions to determine the consistency of a variable selection method based on a generalized information criterion in canonical discriminant analysis. To examine the consistency property, we use a high-dimensional asymptotic framework such that as the sample size n goes to infinity, then the ratio of the length of the observation vector p to the sample size, p∕n, converges to a constant that is less than one even if the dimension of the observation vector also goes to infinity. Using the derived conditions, we propose a consistent variable selection method. From numerical simulations, we show that the probability of selecting the true model by our proposed method is high even when p is large. Further, the advantage of the proposed method is demonstrated by a real data.

Suggested Citation

  • Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19300545
    DOI: 10.1016/j.jmva.2019.104561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19300545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    2. Zhao, L. C. & Krishnaiah, P. R. & Bai, Z. D., 1986. "On detection of the number of signals in presence of white noise," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 1-25, October.
    3. Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
    4. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    5. Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehan Ma & Arthur B. Yeh & John T. Chen, 2023. "Simultaneous Confidence Regions and Weighted Hypotheses on Parameter Arrays," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-18, June.
    2. Aleksey I. Shinkevich & Alsu R. Akhmetshina & Ruslan R. Khalilov, 2022. "Development of a Methodology for Forecasting the Sustainable Development of Industry in Russia Based on the Tools of Factor and Discriminant Analysis," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    3. Yasunori Fujikoshi & Tetsuro Sakurai, 2023. "High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    4. Fujikoshi, Yasunori, 2022. "High-dimensional consistencies of KOO methods in multivariate regression model and discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Nakagawa, Tomoyuki & Watanabe, Hiroki & Hyodo, Masashi, 2021. "Kick-one-out-based variable selection method for Euclidean distance-based classifier in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    2. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    3. Youssef Anzarmou & Abdallah Mkhadri & Karim Oualkacha, 2023. "Sparse overlapped linear discriminant analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 388-417, March.
    4. Yasunori Fujikoshi & Tetsuro Sakurai, 2023. "High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    5. He, Yong & Zhang, Xinsheng & Wang, Pingping, 2016. "Discriminant analysis on high dimensional Gaussian copula model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 100-112.
    6. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Sihai Dave Zhao, 2017. "Integrative genetic risk prediction using non-parametric empirical Bayes classification," Biometrics, The International Biometric Society, vol. 73(2), pages 582-592, June.
    8. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    9. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    10. Sheng, Ying & Wang, Qihua, 2019. "Simultaneous variable selection and class fusion with penalized distance criterion based classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 138-152.
    11. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
    12. Le, Khuyen T. & Chaux, Caroline & Richard, Frédéric J.P. & Guedj, Eric, 2020. "An adapted linear discriminant analysis with variable selection for the classification in high-dimension, and an application to medical data," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    13. Aaron J Molstad & Adam J Rothman, 2018. "Shrinking characteristics of precision matrix estimators," Biometrika, Biometrika Trust, vol. 105(3), pages 563-574.
    14. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    15. Bhandary, Madhusudan, 1996. "Test for generalized variance in signal processing," Statistics & Probability Letters, Elsevier, vol. 27(2), pages 155-162, April.
    16. Mai, Qing & Zou, Hui, 2015. "Sparse semiparametric discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 175-188.
    17. Dawit G. Tadesse & Mark Carpenter, 2019. "A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 405-426, June.
    18. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    19. Yaqiong Cui & Jukka Sirén & Timo Koski & Jukka Corander, 2016. "Simultaneous Predictive Gaussian Classifiers," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 73-102, April.
    20. GONZALO, Jesus & PITARAKIS, Jean-Yves, 1994. "Comovements in Large Systems," LIDAM Discussion Papers CORE 1994065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19300545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.