IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i2d10.1007_s11634-018-0311-8.html
   My bibliography  Save this article

A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces

Author

Listed:
  • Dawit G. Tadesse

    (Cincinnati Children’s Hospital Medical Center)

  • Mark Carpenter

    (Auburn University)

Abstract

In this paper, we give a new feature selection algorithm for the binary class classification problem in sparse high-dimensional spaces. Singular value decomposition (SVD) is a popular dimension reduction method in higher-dimensional classification. The traditional SVD method begins by ranking the Singular Dimensions (SDs) from largest singular value to the smallest. However, when the number of signals is fewer than the number of noise, the first few ranked SDs are not necessarily the best for classification. We demonstrate, theoretically and empirically, that our method efficiently selects the SDs most appropriate for classification and significantly reduces the misclassification error. We also apply our method to real data text mining applications.

Suggested Citation

  • Dawit G. Tadesse & Mark Carpenter, 2019. "A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 405-426, June.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0311-8
    DOI: 10.1007/s11634-018-0311-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0311-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0311-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
    2. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    3. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cheng & Cao, Longbing & Miao, Baiqi, 2013. "Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 140-149.
    2. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    3. Youssef Anzarmou & Abdallah Mkhadri & Karim Oualkacha, 2023. "Sparse overlapped linear discriminant analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 388-417, March.
    4. Zeyu Diao & Lili Yue & Fanrong Zhao & Gaorong Li, 2022. "High-Dimensional Regression Adjustment Estimation for Average Treatment Effect with Highly Correlated Covariates," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    5. Ahn, Jeongyoun & Jeon, Yongho, 2015. "Sparse HDLSS discrimination with constrained data piling," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 74-83.
    6. Hall, Peter & Xue, Jing-Hao, 2014. "On selecting interacting features from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 694-708.
    7. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    8. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
    9. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    10. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    11. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    12. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    13. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    14. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Ahmed Ismaïl & Hartikainen Anna-Liisa & Järvelin Marjo-Riitta & Richardson Sylvia, 2011. "False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-20, November.
    16. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    17. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    18. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    19. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    20. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0311-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.