IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v63y2013icp139-147.html
   My bibliography  Save this article

Sufficient dimension reduction in multivariate regressions with categorical predictors

Author

Listed:
  • Hilafu, Haileab
  • Yin, Xiangrong

Abstract

In this paper, we present a novel sufficient dimension reduction method for multivariate regressions with categorical predictors. We adopt ideas from a previous work byChiaromonte et al. (2002) who proposed sufficient dimension reduction in regressions with categorical predictors and the work by Li et al. (2008) who proposed the projective-resampling idea to multivariate response problems. In addition, we incorporate a variable selection procedure. Simulation studies show the efficacy of our method. We present a real data analysis through our proposed method to discover new association between personal characteristics and dietary factors which influence plasma beta-carotene and retinol levels in human serum.

Suggested Citation

  • Hilafu, Haileab & Yin, Xiangrong, 2013. "Sufficient dimension reduction in multivariate regressions with categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 139-147.
  • Handle: RePEc:eee:csdana:v:63:y:2013:i:c:p:139-147
    DOI: 10.1016/j.csda.2013.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000583
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Ye Z. & Weiss R.E., 2003. "Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 968-979, January.
    3. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
    4. Liqiang Ni & R. Dennis Cook, 2006. "Sufficient dimension reduction in regressions across heterogeneous subpopulations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 89-107, February.
    5. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    6. Lexin Li, 2007. "Sparse sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 94(3), pages 603-613.
    7. Li, Bing & Wen, Songqiao & Zhu, Lixing, 2008. "On a Projective Resampling Method for Dimension Reduction With Multivariate Responses," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1177-1186.
    8. Yoo, Jae Keun & Cook, R. Dennis, 2008. "Response dimension reduction for the conditional mean in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 334-343, December.
    9. Liqiang Ni & R. Dennis Cook & Chih-Ling Tsai, 2005. "A note on shrinkage sliced inverse regression," Biometrika, Biometrika Trust, vol. 92(1), pages 242-247, March.
    10. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    11. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    12. Yoo, Jae Keun, 2009. "Partial moment-based sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 450-456, February.
    13. Bura E. & Cook R.D., 2001. "Extending Sliced Inverse Regression: the Weighted Chi-Squared Test," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 996-1003, September.
    14. Yoo, Jae Keun, 2008. "A novel moment-based sufficient dimension reduction approach in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3843-3851, March.
    15. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    16. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    17. Jae Yoo & Keunbaik Lee & Seongho Wu, 2010. "On the extension of sliced average variance estimation to multivariate regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 529-540, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Francesca Chiaromonte & Bing Li, 2017. "Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units," Biometrics, The International Biometric Society, vol. 73(2), pages 529-539, June.
    2. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Hilafu, Haileab & Wu, Wenbo, 2017. "Partial projective resampling method for dimension reduction: With applications to partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 1-14.
    4. Liu, Xuejing & Huo, Lei & Wen, Xuerong Meggie & Paige, Robert, 2017. "A link-free approach for testing common indices for three or more multi-index models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    2. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    8. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    9. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    10. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
    12. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    13. Zhu, Li-Ping & Zhu, Li-Xing, 2009. "Nonconcave penalized inverse regression in single-index models with high dimensional predictors," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 862-875, May.
    14. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    15. Park, Yujin & Kim, Kyongwon & Yoo, Jae Keun, 2022. "On cross-distance selection algorithm for hybrid sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    16. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    17. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
    18. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    19. Zhenghui Feng & Lu Lin & Ruoqing Zhu & Lixing Zhu, 2020. "Nonparametric variable selection and its application to additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 827-854, June.
    20. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:63:y:2013:i:c:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.