IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2394-2403.html
   My bibliography  Save this article

Inference for the dimension of a regression relationship using pseudo‐covariates

Author

Listed:
  • Shih‐Hao Huang
  • Kerby Shedden
  • Hsin‐wen Chang

Abstract

In data analysis using dimension reduction methods, the main goal is to summarize how the response is related to the covariates through a few linear combinations. One key issue is to determine the number of independent, relevant covariate combinations, which is the dimension of the sufficient dimension reduction (SDR) subspace. In this work, we propose an easily‐applied approach to conduct inference for the dimension of the SDR subspace, based on augmentation of the covariate set with simulated pseudo‐covariates. Applying the partitioning principal to the possible dimensions, we use rigorous sequential testing to select the dimensionality, by comparing the strength of the signal arising from the actual covariates to that appearing to arise from the pseudo‐covariates. We show that under a “uniform direction” condition, our approach can be used in conjunction with several popular SDR methods, including sliced inverse regression. In these settings, the test statistic asymptotically follows a beta distribution and therefore is easily calibrated. Moreover, the family‐wise type I error rate of our sequential testing is rigorously controlled. Simulation studies and an analysis of newborn anthropometric data demonstrate the robustness of the proposed approach, and indicate that the power is comparable to or greater than the alternatives.

Suggested Citation

  • Shih‐Hao Huang & Kerby Shedden & Hsin‐wen Chang, 2023. "Inference for the dimension of a regression relationship using pseudo‐covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2394-2403, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2394-2403
    DOI: 10.1111/biom.13812
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13812
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ding, Shanshan & Cook, R. Dennis, 2015. "Tensor sliced inverse regression," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 216-231.
    2. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    3. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.
    4. Zhu, Li-Ping & Zhu, Li-Xing & Feng, Zheng-Hui, 2010. "Dimension Reduction in Regressions Through Cumulative Slicing Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1455-1466.
    5. Wu, Yujun & Boos, Dennis D. & Stefanski, Leonard A., 2007. "Controlling Variable Selection by the Addition of Pseudovariables," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 235-243, March.
    6. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    7. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    8. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    3. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    4. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Nordhausen, Klaus & Oja, Hannu & Tyler, David E., 2022. "Asymptotic and bootstrap tests for subspace dimension," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    8. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    9. Chen, Fei & Shi, Lei & Zhu, Xuehu & Zhu, Lixing, 2018. "Generalized principal Hessian directions for mixture multivariate skew elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 142-159.
    10. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Stephen Babos & Andreas Artemiou, 2020. "Sliced inverse median difference regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 937-954, December.
    12. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    13. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    14. François Portier, 2016. "An Empirical Process View of Inverse Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 827-844, September.
    15. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    16. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    17. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2014. "Probability-enhanced sufficient dimension reduction for binary classification," Biometrics, The International Biometric Society, vol. 70(3), pages 546-555, September.
    19. Artemiou, Andreas & Tian, Lipu, 2015. "Using sliced inverse mean difference for sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 184-190.
    20. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2394-2403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.