IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i6p1322-1331.html
   My bibliography  Save this article

A modified approximate method for analysis of degradation data

Author

Listed:
  • Thiago Rezende dos Santos
  • Enrico A. Colosimo

Abstract

Estimation of the lifetime distribution of industrial components and systems yields very important information for manufacturers and consumers. However, obtaining reliability data is time consuming and costly. In this context, degradation tests are a useful alternative approach to lifetime and accelerated life tests in reliability studies. The approximate method is one of the most used techniques for degradation data analysis. It is very simple to understand and easy to implement numerically in any statistical software package. This paper uses time series techniques in order to propose a modified approximate method (MAM). The MAM improves the standard one in two aspects: (1) it uses previous observations in the degradation path as a Markov process for future prediction and (2) it is not necessary to specify a parametric form for the degradation path. Characteristics of interest such as mean or median time to failure and percentiles, among others, are obtained by using the modified method. A simulation study is performed in order to show the improved properties of the modified method over the standard one. Both methods are also used to estimate the failure time distribution of the fatigue-crack-growth data set.

Suggested Citation

  • Thiago Rezende dos Santos & Enrico A. Colosimo, 2015. "A modified approximate method for analysis of degradation data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1322-1331, June.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:6:p:1322-1331
    DOI: 10.1080/02664763.2014.999651
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.999651
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.999651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Julio C. Ferreira & Marta A. Freitas & Enrico A. Colosimo, 2012. "Degradation data analysis for samples under unequal operating conditions: a case study on train wheels," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2721-2739, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    3. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    4. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    5. Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
    6. Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
    7. Anis Chariri & Indira Januarti, 2017. "Audit Committee Characteristics and Integrated Reporting:Empirical Study of Companies Listed on the Johannesburg Stock Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 305-318.
    8. Kusters, Ulrich & McCullough, B.D. & Bell, Michael, 2006. "Forecasting software: Past, present and future," International Journal of Forecasting, Elsevier, vol. 22(3), pages 599-615.
    9. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    10. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    11. Tashman, Leonard J. & Kruk, Joshua M., 1996. "The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 12(2), pages 235-253, June.
    12. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    13. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
    14. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    15. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
    16. Isabella Damdinovna Elyakova & Aleksandr Andreyevich Khristoforov & Aleksandr Lvovich Elyakov & Larisa Ivanovna Danilova & Tamara Aleksandrovna Karataeva & Elena Vladimirovna Danilova, 2017. "Forecast Scenarios of World Prices for Natural Gas," European Research Studies Journal, European Research Studies Journal, vol. 0(4A), pages 284-297.
    17. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    18. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    19. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    20. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:6:p:1322-1331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.