IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v89y2023ics0038012123002057.html
   My bibliography  Save this article

Optimization models for nopal crop planning with land usage expansion and government subsidy

Author

Listed:
  • Ramos, Francisco López
  • Batres, Rafael
  • De-la-Cruz-Márquez, Cynthia Griselle
  • Anzures, Melina López

Abstract

This paper studies the production planning of edible nopal cactus in Morelos (a state of Mexico), considering the land usage expansion to account for the increase of the demand along the years. To this end, two optimization models are proposed and formulated as mixed-integer linear programs. One mimics the current practice of minimizing the total production costs while satisfying all the demand in each planning period; whereas, the other reflects a policy of maximizing the total profit of the farmer and calculates the proportion of the demand to be satisfied in each planning period. Additionally, a lexicographic programming model is introduced to estimate the minimum government subsidy that compensates the lack of profit in periods with lower demand and higher costs. Historical harvesting data was obtained from annual reports of the Agrifood and Fisheries Information Service, and used in the formulated models. A comparison of both optimization models shows that the profit maximization model provides the best balance between profit and subsidy. Finally, a sensitivity analysis on variations of price, minimum profit, and production costs, shows that the price has the strongest effect on all KPIs in all the cases. This work shows that the current practice of producing all the amount of demanded nopal is inadequate. The profit maximization policy shows a slight less profit but needs significant less subsidy to meet the minimum monthly profit. Moreover, as the optimization models converge in less than a second, the decision maker has the opportunity to analyze a wide variety of scenarios in a short period of time.

Suggested Citation

  • Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:soceps:v:89:y:2023:i:c:s0038012123002057
    DOI: 10.1016/j.seps.2023.101693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123002057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Bohle, Carlos & Maturana, Sergio & Vera, Jorge, 2010. "A robust optimization approach to wine grape harvesting scheduling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 245-252, January.
    3. Omar Ahumada & J. Villalobos, 2011. "A tactical model for planning the production and distribution of fresh produce," Annals of Operations Research, Springer, vol. 190(1), pages 339-358, October.
    4. Chaimongkol Limpianchob, 2017. "Integrated of harvesting and production planning in aromatic coconut supply chain using mixed-integer linear programming," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 30(3), pages 360-374.
    5. Ahumada, Omar & Rene Villalobos, J. & Nicholas Mason, A., 2012. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty," Agricultural Systems, Elsevier, vol. 112(C), pages 17-26.
    6. Alysson Costa & Lana Santos & Douglas Alem & Ricardo Santos, 2014. "Sustainable vegetable crop supply problem with perishable stocks," Annals of Operations Research, Springer, vol. 219(1), pages 265-283, August.
    7. John J. Glen, 1987. "Feature Article—Mathematical Models in Farm Planning: A Survey," Operations Research, INFORMS, vol. 35(5), pages 641-666, October.
    8. Gómez-Lagos, Javier E. & González-Araya, Marcela C. & Soto-Silva, Wladimir E. & Rivera-Moraga, Masly M., 2021. "Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach," European Journal of Operational Research, Elsevier, vol. 290(1), pages 297-312.
    9. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, April.
    10. Catalá, Luis P. & Durand, Guillermo A. & Blanco, Aníbal M. & Alberto Bandoni, J., 2013. "Mathematical model for strategic planning optimization in the pome fruit industry," Agricultural Systems, Elsevier, vol. 115(C), pages 63-71.
    11. Burak Kazaz, 2004. "Production Planning Under Yield and Demand Uncertainty with Yield-Dependent Cost and Price," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 209-224, October.
    12. Randall, M. & Montgomery, J. & Lewis, A., 2022. "Robust temporal optimisation for a crop planning problem under climate change uncertainty," Operations Research Perspectives, Elsevier, vol. 9(C).
    13. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    14. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    15. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    2. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    3. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    4. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    5. Kate, Joeri ten & Teunter, Ruud & Kusumastuti, Ratih Dyah & van Donk, Dirk Pieter, 2017. "Bio-diesel production using mobile processing units: A case in Indonesia," Agricultural Systems, Elsevier, vol. 152(C), pages 121-130.
    6. Wishon, C. & Villalobos, J.R. & Mason, N. & Flores, H. & Lujan, G., 2015. "Use of MIP for planning temporary immigrant farm labor force," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 25-33.
    7. Gómez-Lagos, Javier E. & González-Araya, Marcela C. & Soto-Silva, Wladimir E. & Rivera-Moraga, Masly M., 2021. "Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach," European Journal of Operational Research, Elsevier, vol. 290(1), pages 297-312.
    8. Borodin, Valeria & Bourtembourg, Jean & Hnaien, Faicel & Labadie, Nacima, 2016. "Handling uncertainty in agricultural supply chain management: A state of the art," European Journal of Operational Research, Elsevier, vol. 254(2), pages 348-359.
    9. Ahumada, Omar & Rene Villalobos, J. & Nicholas Mason, A., 2012. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty," Agricultural Systems, Elsevier, vol. 112(C), pages 17-26.
    10. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    11. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    12. Ana Esteso & M. M. E. Alemany & Angel Ortiz & Shaofeng Liu, 2022. "Optimization model to support sustainable crop planning for reducing unfairness among farmers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 1101-1127, September.
    13. Zgajnar, Jaka & Kavcic, Stane, 2011. "Weighted Goal Programming and Penalty Functions: Whole-farm Planning Approach Under Risk," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 118033, European Association of Agricultural Economists.
    14. Shunyu Yao & Neng Fan & Clark Seavert & Trent Teegerstrom, 2023. "Demand-Driven Harvest Planning and Machinery Scheduling for Guayule," SN Operations Research Forum, Springer, vol. 4(1), pages 1-25, March.
    15. González-Pachón, Jacinto & Romero, Carlos, 2016. "Bentham, Marx and Rawls ethical principles: In search for a compromise," Omega, Elsevier, vol. 62(C), pages 47-51.
    16. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
    17. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.
    18. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    19. Oliveira, Washington A. & Fiorotto, Diego J. & Song, Xiang & Jones, Dylan F., 2021. "An extended goal programming model for the multiobjective integrated lot-sizing and cutting stock problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 996-1007.
    20. Nouira, Imen & Hammami, Ramzi & Fernandez Arias, Alina & Gondran, Natacha & Frein, Yannick, 2022. "Olive oil supply chain design with organic and conventional market segments and consumers’ preference to local products," International Journal of Production Economics, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:89:y:2023:i:c:s0038012123002057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.