IDEAS home Printed from https://ideas.repec.org/a/eee/techno/v110y2022ics0166497221001528.html
   My bibliography  Save this article

An innovative demand forecasting approach for the server industry

Author

Listed:
  • Tsao, Yu-Chung
  • Chen, Yu-Kai
  • Chiu, Shih-Hao
  • Lu, Jye-Chyi
  • Vu, Thuy-Linh

Abstract

Research has been conducted on approaches using social media information to improve demand forecasting accuracy in business-to-customer industries. However, such social media information is not applicable to business-to-business (B2B) industries, as a result of a lack of end-consumer evaluations. This raises a few interesting questions, including whether there may be any external information that could be used to improve B2B demand forecasting, and whether practical approaches may be possible to collect and utilize useful external business information. In this study, we develop an innovative and intelligent demand forecasting approach and apply it to a B2B server company based in the United States. We first implemented time series and machine learning models based on sales data and selected the best-fitting model as a baseline, and then used a web crawler and Google Trends to collect related market signals as external information indices for the server industry, which were finally incorporated into the selected baseline model to adjust forecasting results to account for demand fluctuations. Experimental results demonstrate that the baseline model achieved an out‐of‐sample mean squared error (MSE) of 19.77 without considering the collected external information indices, and 11.87 when external information was incorporated. Therefore, our proposed approach significantly improved forecasting accuracy, demonstrating an improvement of 63.1% in terms of MSE, 44.1% in terms of mean absolute error, and 61.2% in terms of root mean square percentage error. Thus, this study sheds light on the value of external information in demand forecasting for B2B industries.

Suggested Citation

  • Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
  • Handle: RePEc:eee:techno:v:110:y:2022:i:c:s0166497221001528
    DOI: 10.1016/j.technovation.2021.102371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0166497221001528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.technovation.2021.102371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    3. Vishal Gaur & Saravanan Kesavan & Ananth Raman & Marshall L. Fisher, 2007. "Estimating Demand Uncertainty Using Judgmental Forecasts," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 480-491, April.
    4. Chien, Chen-Fu & Chen, Yun-Ju & Peng, Jin-Tang, 2010. "Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle," International Journal of Production Economics, Elsevier, vol. 128(2), pages 496-509, December.
    5. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    7. Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
    8. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    9. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    10. Tonya Boone & Ram Ganeshan & Robert L. Hicks & Nada R. Sanders, 2018. "Can Google Trends Improve Your Sales Forecast?," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1770-1774, October.
    11. Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Messeni Petruzzelli, Antonio & Mora, Luca & Natalicchio, Angelo & Platania, Federico & Toscano Hernandez, Celina, 2024. "Consumers’ reaction to sci-fi as a source of information for technological development: An empirical analysis," Technovation, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
    2. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    3. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    6. Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
    7. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    8. Robert P. Rooderkerk & Nicole DeHoratius & Andrés Musalem, 2022. "The past, present, and future of retail analytics: Insights from a survey of academic research and interviews with practitioners," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3727-3748, October.
    9. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    11. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    12. Bharadwaj Kadiyala & Özalp Özer & A. Serdar Şimşek, 2021. "Data‐Driven Approaches to Targeting Promotion E‐mails: The Case of Delayed Incentives," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 766-782, March.
    13. Victor Martínez‐de‐Albéniz & Arnau Planas & Stefano Nasini, 2020. "Using Clickstream Data to Improve Flash Sales Effectiveness," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2508-2531, November.
    14. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    15. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
    16. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    17. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    18. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
    19. Ho Cheung Brian Lee & Jan Stallaert & Ming Fan, 2020. "Anomalies in Probability Estimates for Event Forecasting on Prediction Markets," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2077-2095, September.
    20. Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:techno:v:110:y:2022:i:c:s0166497221001528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/01664972 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.