Seasonal Inventory Management Model for Raw Materials in Steel Industry
Author
Abstract
Suggested Citation
DOI: 10.1287/inte.2021.1073
Download full text from publisher
References listed on IDEAS
- Hung-po Chao & Stephen W. Chapel & Charles E. Clark & Peter A. Morris & M. James Sandling & Richard C. Grimes, 1989. "EPRI Reduces Fuel Inventory Costs in the Electric Utility Industry," Interfaces, INFORMS, vol. 19(1), pages 48-67, February.
- Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
- Jing-Sheng Song & Hanqin Zhang & Yumei Hou & Mingzheng Wang, 2010. "The Effect of Lead Time and Demand Uncertainties in ( r, q ) Inventory Systems," Operations Research, INFORMS, vol. 58(1), pages 68-80, February.
- Mahmut Parlar & Defne Berkin, 1991. "Future supply uncertainty in EOQ models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 107-121, February.
- Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
- Antonio Arreola‐Risa & Gregory A. DeCroix, 1998. "Inventory management under random supply disruptions and partial backorders," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 687-703, October.
- Tulika Chakraborty & Satyaveer S. Chauhan & Mustapha Ouhimmou, 2020. "Mitigating supply disruption with a backup supplier under uncertain demand: competition vs. cooperation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3618-3649, June.
- Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
- Konstantaras, I. & Skouri, K. & Lagodimos, A.G., 2019. "EOQ with independent endogenous supply disruptions," Omega, Elsevier, vol. 83(C), pages 96-106.
- L Tang & G Liu & J Liu, 2008. "Raw material inventory solution in iron and steel industry using Lagrangian relaxation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 44-53, January.
- Bakal, İsmail Serdar & Bayındır, Z. Pelin & Emer, Deniz Esin, 2017. "Value of disruption information in an EOQ environment," European Journal of Operational Research, Elsevier, vol. 263(2), pages 446-460.
- Magfura Pervin & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2018. "Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration," Annals of Operations Research, Springer, vol. 260(1), pages 437-460, January.
- Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
- Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
- Snyder, Lawrence V., 2014. "A tight approximation for an EOQ model with supply disruptions," International Journal of Production Economics, Elsevier, vol. 155(C), pages 91-108.
- Schmitt, Thomas G. & Kumar, Sanjay & Stecke, Kathryn E. & Glover, Fred W. & Ehlen, Mark A., 2017. "Mitigating disruptions in a multi-echelon supply chain using adaptive ordering," Omega, Elsevier, vol. 68(C), pages 185-198.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saeed Poormoaied & Ece Zeliha Demirci, 2021. "Analysis of an inventory system with emergency ordering option at the time of supply disruption," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1007-1045, December.
- Taleizadeh, Ata Allah & Tafakkori, Keivan & Thaichon, Park, 2021. "Resilience toward supply disruptions: A stochastic inventory control model with partial backordering under the base stock policy," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
- Karakatsoulis, G. & Skouri, K., 2023. "A periodic review inventory model facing different disruption profiles," International Journal of Production Economics, Elsevier, vol. 265(C).
- Sevgen, Arya & Sargut, F. Zeynep, 2019. "May reorder point help under disruptions?," International Journal of Production Economics, Elsevier, vol. 209(C), pages 61-69.
- Konstantaras, I. & Skouri, K. & Lagodimos, A.G., 2019. "EOQ with independent endogenous supply disruptions," Omega, Elsevier, vol. 83(C), pages 96-106.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
- Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
- Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
- Gregory A. DeCroix, 2013. "Inventory Management for an Assembly System Subject to Supply Disruptions," Management Science, INFORMS, vol. 59(9), pages 2079-2092, September.
- Liu, Zhongyi & Li, Mengyu & Zhai, Xin, 2022. "Managing supply chain disruption threat via a strategy combining pricing and self-protection," International Journal of Production Economics, Elsevier, vol. 247(C).
- Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
- Feng Xu & Mohamad Sepehri & Jian Hua & Sergey Ivanov & Julius N. Anyu, 2018. "Time-Series Forecasting Models for Gasoline Prices in China," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(12), pages 1-43, December.
- Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Veiga, Claudimar Pereira da & Veiga, Cássia Rita Pereira da & Puchalski, Weslly & Coelho, Leandro dos Santos & Tortato, Ubiratã, 2016. "Demand forecasting based on natural computing approaches applied to the foodstuff retail segment," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 174-181.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- He, Jian & Alavifard, Farzad & Ivanov, Dmitry & Jahani, Hamed, 2019. "A real-option approach to mitigate disruption risk in the supply chain," Omega, Elsevier, vol. 88(C), pages 133-149.
- Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
More about this item
Keywords
statistical stock policy; safety stock management; multi-plants; multi-materials; two-stage model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:51:y:2021:i:4:p:312-324. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.