IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i9p2067-2079.html
   My bibliography  Save this article

A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses

Author

Listed:
  • H. Zhang
  • Q. Yu
  • C. Feng
  • D. Gunzler
  • P. Wu
  • X. M. Tu

Abstract

Poisson log-linear regression is a popular model for count responses. We examine two popular extensions of this model -- the generalized estimating equations (GEE) and the generalized linear mixed-effects model (GLMM) -- to longitudinal data analysis and complement the existing literature on characterizing the relationship between the two dueling paradigms in this setting. Unlike linear regression, the GEE and the GLMM carry significant conceptual and practical implications when applied to modeling count data. Our findings shed additional light on the differences between the two classes of models when used for count data. Our considerations are demonstrated by both real study and simulated data.

Suggested Citation

  • H. Zhang & Q. Yu & C. Feng & D. Gunzler & P. Wu & X. M. Tu, 2012. "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2067-2079, June.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:9:p:2067-2079
    DOI: 10.1080/02664763.2012.700452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.700452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.700452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    2. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    3. R. Crouchley & R. B. Davies, 1999. "A comparison of population average and random‐effect models for the analysis of longitudinal count data with base‐line information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(3), pages 331-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Lu & T. Chen & P. Wu & D. Gunzler & H. Zhang & H. He & X.M. Tu, 2014. "Functional response models for intraclass correlation coefficients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2539-2556, November.
    2. Morgunov, V.I. (Моргунов, В.И.), 2016. "The Liquidity Management of the Banking Sector and the Short-Term Money Market Interest Rates [Управление Ликвидностью Банковского Сектора И Краткосрочной Процентной Ставкой Денежного Рынка]," Working Papers 21311, Russian Presidential Academy of National Economy and Public Administration.
    3. Bei Wang & Jeffrey R. Wilson, 2018. "Comparative GMM and GQL logistic regression models on hierarchical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 409-425, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    2. Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
    3. Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
    4. Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
    5. Amy H. Herring & Juan Yang, 2007. "Bayesian Modeling of Multiple Episode Occurrence and Severity with a Terminating Event," Biometrics, The International Biometric Society, vol. 63(2), pages 381-388, June.
    6. Silvia Bianconcini, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 466-468, September.
    7. Ali Noudoostbeni & Kiran Kaur & Hashem Salarzadeh Jenatabadi, 2018. "A Comparison of Structural Equation Modeling Approaches with DeLone & McLean’s Model: A Case Study of Radio-Frequency Identification User Satisfaction in Malaysian University Libraries," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    8. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    9. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    10. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    11. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    12. E. Juarez‐Colunga & G. L. Silva & C. B. Dean, 2017. "Joint modeling of zero‐inflated panel count and severity outcomes," Biometrics, The International Biometric Society, vol. 73(4), pages 1413-1423, December.
    13. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    14. José Lombardía, María & Sperlich, Stefan, 2012. "A new class of semi-mixed effects models and its application in small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2903-2917.
    15. D. B. Woodard & T. M. T. Love & S. W. Thurston & D. Ruppert & S. Sathyanarayana & S. H. Swan, 2013. "Latent factor regression models for grouped outcomes," Biometrics, The International Biometric Society, vol. 69(3), pages 785-794, September.
    16. Song, Xin-Yuan & Tang, Nian-Sheng & Chow, Sy-Miin, 2012. "A Bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4190-4203.
    17. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    18. David B. Dunson & Donna D. Baird, 2002. "Bayesian Modeling of Incidence and Progression of Disease from Cross-Sectional Data," Biometrics, The International Biometric Society, vol. 58(4), pages 813-822, December.
    19. Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
    20. Thomas R. Ten Have & Beth A. Reboussin & Michael E. Miller & Allen Kunselman, 2002. "Mixed Effects Logistic Regression Models for Multiple Longitudinal Binary Functional Limitation Responses with Informative Drop-Out and Confounding by Baseline Outcomes," Biometrics, The International Biometric Society, vol. 58(1), pages 137-144, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:9:p:2067-2079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.