IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4190-4203.html
   My bibliography  Save this article

A Bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects

Author

Listed:
  • Song, Xin-Yuan
  • Tang, Nian-Sheng
  • Chow, Sy-Miin

Abstract

This paper proposes a generalized random coefficient structural equation model for analyzing longitudinal data by incorporating the correlated structure due to adjacent time effects and by allowing structural parameters to vary across individuals. The coregionalization for modeling multivariate spatial data is adopted to formulate the correlated structure between adjacent time points. A Bayesian approach coupled with the Gibbs sampler and the Metropolis–Hastings algorithm is developed to obtain the Bayesian estimates of unknown parameters and latent variables simultaneously. A simulation study and a real example related to an emotion study are presented to illustrate the newly developed methodology.

Suggested Citation

  • Song, Xin-Yuan & Tang, Nian-Sheng & Chow, Sy-Miin, 2012. "A Bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4190-4203.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4190-4203
    DOI: 10.1016/j.csda.2012.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001806
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    2. Xin-Yuan Song & Sik-Yum Lee, 2002. "Analysis of structural equation model with ignorable missing continuous and polytomous data," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 261-288, June.
    3. Hogan J.W. & Tchernis R., 2004. "Bayesian Factor Analysis for Spatially Correlated Data, With Application to Summarizing Area-Level Material Deprivation From Census Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 314-324, January.
    4. Sanchez, Brisa N. & Budtz-Jorgensen, Esben & Ryan, Louise M. & Hu, Howard, 2005. "Structural Equation Models: A Review With Applications to Environmental Epidemiology," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1443-1455, December.
    5. Asim Ansari & Kamel Jedidi & Laurette Dube, 2002. "Heterogeneous factor analysis models: A bayesian approach," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 49-77, March.
    6. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhao Pan & Edward Haksing Ip & Laurette Dubé, 2020. "Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 75-100, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    2. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    3. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    4. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    5. Ivaldi, Enrico, 2013. "Proposal of a country risk index based on a factorial analysis - Una proposta di indice di rischio paese basato sull’analisi fattoriale: una applicazione ai paesi del sud del Mediterraneo e ai paesi d," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 66(2), pages 231-249.
    6. Silvia Bianconcini, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 466-468, September.
    7. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    8. Will Davis & Alexander Gordan & Rusty Tchernis, 2021. "Measuring the spatial distribution of health rankings in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2921-2936, November.
    9. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    10. Marta Santagata & Enrico Ivaldi & Riccardo Soliani, 2019. "Development and Governance in the Ex-Soviet Union: An Empirical Inquiry," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 157-190, January.
    11. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    12. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    13. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    14. Karsten Hansen & Vishal Singh & Pradeep Chintagunta, 2006. "Understanding Store-Brand Purchase Behavior Across Categories," Marketing Science, INFORMS, vol. 25(1), pages 75-90, 01-02.
    15. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    16. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
    17. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    18. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    19. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    20. Kees Montfort & Johan Oud, 2015. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 257-258, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4190-4203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.