IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i3p409-425.html
   My bibliography  Save this article

Comparative GMM and GQL logistic regression models on hierarchical data

Author

Listed:
  • Bei Wang
  • Jeffrey R. Wilson

Abstract

We often rely on the likelihood to obtain estimates of regression parameters but it is not readily available for generalized linear mixed models (GLMMs). Inferences for the regression coefficients and the covariance parameters are key in these models. We presented alternative approaches for analyzing binary data from a hierarchical structure that do not rely on any distributional assumptions: a generalized quasi-likelihood (GQL) approach and a generalized method of moments (GMM) approach. These are alternative approaches to the typical maximum-likelihood approximation approach in Statistical Analysis System (SAS) such as Laplace approximation (LAP). We examined and compared the performance of GQL and GMM approaches with multiple random effects to the LAP approach as used in PROC GLIMMIX, SAS. The GQL approach tends to produce unbiased estimates, whereas the LAP approach can lead to highly biased estimates for certain scenarios. The GQL approach produces more accurate estimates on both the regression coefficients and the covariance parameters with smaller standard errors as compared to the GMM approach. We found that both GQL and GMM approaches are less likely to result in non-convergence as opposed to the LAP approach. A simulation study was conducted and a numerical example was presented for illustrative purposes.

Suggested Citation

  • Bei Wang & Jeffrey R. Wilson, 2018. "Comparative GMM and GQL logistic regression models on hierarchical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 409-425, February.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:409-425
    DOI: 10.1080/02664763.2017.1279595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1279595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1279595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Jowaheer, Vandna & Sutradhar, Brajendra, 2009. "GMM versus GQL inferences for panel count data," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1928-1934, September.
    3. Yoonsang Kim & Young-Ku Choi & Sherry Emery, 2013. "Logistic Regression With Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages," The American Statistician, Taylor & Francis Journals, vol. 67(3), pages 171-182, August.
    4. H. Zhang & Q. Yu & C. Feng & D. Gunzler & P. Wu & X. M. Tu, 2012. "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2067-2079, June.
    5. Zhiguo Xiao & Jun Shao & Mari Palta, 2010. "GMM in linear regression for longitudinal data with multiple covariates measured with error," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 791-805.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    2. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    3. Frederico Belo & Chen Xue & Lu Zhang, 2010. "Cross-sectional Tobin's Q," NBER Working Papers 16336, National Bureau of Economic Research, Inc.
    4. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    5. Alfonso Mendoza-Velázquez & Luis Carlos Ortuño-Barba & Luis David Conde-Cortés, 2022. "Corporate governance and firm performance in hybrid model countries," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 21(1), pages 32-58, February.
    6. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    7. Kutuk, Yasin, 2022. "Inequality convergence: A world-systems theory approach," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 150-165.
    8. Smoluk, H. J. & Neveu, Raymond P., 2002. "Consumption and asset prices: An analysis across income groups," Review of Financial Economics, Elsevier, vol. 11(1), pages 47-62.
    9. Bruce N. Lehmann, 2005. "The Role of Beliefs in Inference for Rational Expectations Models," NBER Working Papers 11758, National Bureau of Economic Research, Inc.
    10. Aslan, Alper & Kaplan, Muhittin & Kula, Ferit, 2008. "International Tourism Demand for Turkey: A Dynamic Panel Data Approach," MPRA Paper 10601, University Library of Munich, Germany.
    11. de Mendonça, Helder Ferreira & Tiberto, Bruno Pires, 2014. "Public debt and social security: Level of formality matters," Economic Modelling, Elsevier, vol. 42(C), pages 490-507.
    12. Alessandra Canepa & Fawaz Khaled, 2018. "Housing, Housing Finance and Credit Risk," IJFS, MDPI, vol. 6(2), pages 1-23, May.
    13. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    14. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    15. repec:ebl:ecbull:v:3:y:2007:i:44:p:1-6 is not listed on IDEAS
    16. Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
    17. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    18. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    19. Lee, Boram & Rosenthal, Leonard & Veld, Chris & Veld-Merkoulova, Yulia, 2015. "Stock market expectations and risk aversion of individual investors," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 122-131.
    20. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    21. Alex Cukierman & Anton Muscatelli, 2001. "Do Central Banks have Precautionary Demands for Expansions and for Price Stability?," Working Papers 2002_4, Business School - Economics, University of Glasgow, revised Mar 2002.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:409-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.