IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i9p2172-2186.html
   My bibliography  Save this article

Semiparametric Bayes hierarchical models with mean and variance constraints

Author

Listed:
  • Yang, Mingan
  • Dunson, David B.
  • Baird, Donna

Abstract

In parametric hierarchical models, it is standard practice to place mean and variance constraints on the latent variable distributions for the sake of identifiability and interpretability. Because incorporation of such constraints is challenging in semiparametric models that allow latent variable distributions to be unknown, previous methods either constrain the median or avoid constraints. In this article, we propose a centered stick-breaking process (CSBP), which induces mean and variance constraints on an unknown distribution in a hierarchical model. This is accomplished by viewing an unconstrained stick-breaking process as a parameter-expanded version of a CSBP. An efficient blocked Gibbs sampler is developed for approximate posterior computation. The methods are illustrated through a simulated example and an epidemiologic application.

Suggested Citation

  • Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2172-2186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00127-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deborah Burr & Hani Doss, 2005. "A Bayesian Semiparametric Model for Random-Effects Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 242-251, March.
    2. Ishwaran H. & Takahara G., 2002. "Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1154-1166, December.
    3. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    4. Gelman A., 2004. "Parameterization and Bayesian Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 537-545, January.
    5. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    6. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    7. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    8. Hanson T. & Johnson W.O., 2002. "Modeling Regression Error With a Mixture of Polya Trees," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1020-1033, December.
    9. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhir Voleti & Pulak Ghosh, 2013. "A robust approach to measure latent, time-varying equity in hierarchical branding structures," Quantitative Marketing and Economics (QME), Springer, vol. 11(3), pages 289-319, September.
    2. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    3. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    5. Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
    6. Nian-Sheng Tang & De-Wang Li & An-Min Tang, 2017. "Semiparametric Bayesian inference on generalized linear measurement error models," Statistical Papers, Springer, vol. 58(4), pages 1091-1113, December.
    7. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    8. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    9. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    10. Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
    11. Rodney A. Sparapani & Brent R. Logan & Martin J. Maiers & Purushottam W. Laud & Robert E. McCulloch, 2023. "Nonparametric failure time: Time‐to‐event machine learning with heteroskedastic Bayesian additive regression trees and low information omnibus Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 79(4), pages 3023-3037, December.
    12. Yang Li & Asim Ansari, 2014. "A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models," Management Science, INFORMS, vol. 60(5), pages 1161-1179, May.
    13. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    14. Wenting Liu & Huiqiong Li & Anmin Tang & Zixin Cui, 2023. "Bayesian Joint Modeling Analysis of Longitudinal Proportional and Survival Data," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    15. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
    16. Song, Xin-Yuan & Chen, Fei & Lu, Zhao-Hua, 2013. "A Bayesian semiparametric dynamic two-level structural equation model for analyzing non-normal longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 87-108.
    17. Tang, Nian-Sheng & Duan, Xing-De, 2014. "Bayesian influence analysis of generalized partial linear mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 86-99.
    18. Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    2. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    3. Sugawara, Shinya, 2012. "A nonparametric Bayesian approach for counterfactual prediction with an application to the Japanese private nursing home market," MPRA Paper 42154, University Library of Munich, Germany.
    4. Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.
    5. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    6. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
    7. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    8. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    9. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    10. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    11. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    12. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    13. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 258-293, June.
    14. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    15. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    16. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    17. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    18. David B. Dunson & Sally D. Perreault, 2001. "Factor Analytic Models of Clustered Multivariate Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 302-308, March.
    19. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    20. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    21. Metaxas, Theodore & Kallioras, Dimitris, 2013. "Small and medium-sized firms' competitiveness and territorial characteristics/assets: The cases of Bari, Varna and Thessaloniki," MPRA Paper 52446, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2172-2186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.