Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients
Author
Abstract
Suggested Citation
DOI: 10.1080/02664760902914466
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robin Henderson, 2003. "A serially correlated gamma frailty model for longitudinal count data," Biometrika, Biometrika Trust, vol. 90(2), pages 355-366, June.
- Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
- R. Crouchley & R. B. Davies, 1999. "A comparison of population average and random‐effect models for the analysis of longitudinal count data with base‐line information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(3), pages 331-347.
- Chib, Siddhartha & Greenberg, Edward & Winkelmann, Rainer, 1998.
"Posterior simulation and Bayes factors in panel count data models,"
Journal of Econometrics, Elsevier, vol. 86(1), pages 33-54, June.
- Siddhartha Chib & Edward Greenberg & Rainer Winkelmann, 1996. "Posterior Simulation and Bayes Factors in Panel Count Data Models," Econometrics 9608003, University Library of Munich, Germany, revised 25 Nov 1996.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
- Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
- J. Polzehl & V. G. Spokoiny, 2000. "Adaptive weights smoothing with applications to image restoration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 335-354.
- David B. Dunson & Donna D. Baird, 2002. "A Proportional Hazards Model for Incidence and Induced Remission of Disease," Biometrics, The International Biometric Society, vol. 58(1), pages 71-78, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fernanda B. Rizzato & Roseli A. Leandro & Clarice G.B. Demétrio & Geert Molenberghs, 2016. "A Bayesian approach to analyse overdispersed longitudinal count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2085-2109, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
- Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
- Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
- Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
- Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
- H. Zhang & Q. Yu & C. Feng & D. Gunzler & P. Wu & X. M. Tu, 2012. "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2067-2079, June.
- Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
- Feng, Xiangnan & Lu, Bin & Song, Xinyuan & Ma, Shuang, 2019. "Financial literacy and household finances: A Bayesian two-part latent variable modeling approach," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 119-137.
- Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
- Jorge Alberto Achcar & Edilberto Cepeda-Cuervo & Eliane R. Rodrigues, 2012. "Weibull and generalised exponential overdispersion models with an application to ozone air pollution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1953-1963, May.
- Ling Zhou & Huazhen Lin & Yi-Chen Lin, 2016. "Education, Intelligence, and Well-Being: Evidence from a Semiparametric Latent Variable Transformation Model for Multiple Outcomes of Mixed Types," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 125(3), pages 1011-1033, February.
- Jianhong Wang & Xiaoyan Lin, 2020. "A Bayesian approach for semiparametric regression analysis of panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 402-420, April.
- Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Mumtaz, Haroon & Theodoridis, Konstantinos, 2017.
"Common and country specific economic uncertainty,"
Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
- Haroon Mumtaz & Konstantinos Theodoridis, 2015. "Common and Country Specific Economic Uncertainty," Working Papers 752, Queen Mary University of London, School of Economics and Finance.
- Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
- Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
- Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
More about this item
Keywords
longitudinal Poisson data; “frailty” models; hierarchical Bayesian analysis; Winbugs software; clinical data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:5:p:865-880. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.